

ABU DHABI QUALITY AND CONFORMITY COUNCIL Services Fees

1-Trustmark Issuance Services

The Abu Dhabi Quality and Conformity Council (QCC) charges the fees below in exchange for the actions and services related to issuing the Trustmark:

Ser. No.	Service	Fee in AED
1	Submission of license application	600
2	Study of license application	2,500
3	License	15,000
4	License Renewal	10,000
5	Manufacturer assessment	2,500 daily per each assessor
6	Issuing product conformity certificate (including exchange/ replacement)	100
7	Initial assessment of the product	2,500 daily per each assessor

2-Conformity Assessment Services

The Abu Dhabi Quality and Conformity Council (ADQCC) charges the fees below in exchange for the conformity assessment services provided as follows:

A-Registration-related Services:

Ser. No.	Service	Fee in AED
1	Submission of registration application	200
2	Assessment of quality booklet	800
3	Assessment on site	3,000 daily per each assessor
4	Issuance of a temporary non-objection certificate until requirements are met or completed.	300
5	One-year registration	1,000
6	Renewal of one-year registration	800
7	Lifting of registration suspension	500

A-Appointment-related Services:

Ser. No.	Service	Fee in AED
1	Submission of appointment application	1,000
2	Assessment of quality documents	2,500
3	Assessment on site	7,500 daily per each assessor
4	Issuance of 3-year certificate of appointment	15,000
5	Renewal of 3-year certificate of appointment	10,000
6	Lifting of appointment suspension	1,000
7	Submission of an application for amendment of appointment aspect	1,000
8	Issuing of appointment certificate replacement	1,000

3-Individuals Conformity Services Fees

The Abu Dhabi Quality and Conformity Council (ADQCC) charges the fees below in exchange for the individuals conformity services:

A-Unqualified Individuals Conformity Services:

Ser. No.	Service	Fee in AED
1	Submission of application	50
2	Issuance of certificate	100
3	Renewal of certificate	50

B-Qualified Individuals Conformity Services:

Ser. No.	Service	Fee in AED
1	Submission of application	50
2	Issuance of certificate	250
3	Renewal of certificate	50

C-Specialized Individuals Conformity Services:

Ser. No.	Service	Fee in AED
1	Submission of application	50
2	Issuance of certificate	500
3	Renewal of certificate	50

4-Emirates Metrology Institute Services Fees

The Abu Dhabi Quality and Conformity Council (ADQCC) charges the fees below in exchange for the services provided by the Emirates Metrology Institute labs at the ADCC as follows:

A-Dimensions Lab Functions and Services:

Ser. No.	Service	Fee in AED
1	Calibration of measurement templates up to 100 millimeters	100 + 60/piece
2	Calibration of measurement templates (over 100-1000) millimeters	100 + 60/piece
3	Calibration of caliper up to 300 millimeters	500
4	Calibration of caliper (over 100-1000) millimeters	600
5	Calibration of micrometer	500

B-Electricity Lab Functions and Services:

Ser. No.	Service	Fee in AED
1	Calibration of voltmeter at (10 &1.018) volt	500
2	Calibration of amperemeter (1 Microampere 10-ampere)	300
3	Calibration of Testing devices of voltage, electric current and resistance	150 + 250/per quantity of measurement

C-Strength, Torque, and Pressure Lab Functions and Services:

Ser. No.	Service	Fee in AED
1	Calibration of strength sensors with (load cells) indicators in tension or pressure direction: up to 5 kilonewton.	1000/direction
2	Calibration of strength sensors with (load cells) indicators in tension or pressure direction: (over 5-100 kilonewton.	1000/direction
3	Calibration of strength sensors with (load cells) indicators in tension or pressure direction: (over 100-1000 kilonewton.	1500/direction
4	Calibration of strength sensors with (load cells) indicators in tension or pressure direction: (over 1000-2000) kilonewton.	2000/direction
5	Calibration of strength sensors with (load cells) indicators in tension or pressure direction: (over 2000-5000) kilonewton.	2000/direction
6	Calibration services of torque devices in the two directions: (0.5-1000) newton meters.	750/direction

D-Mass Lab Services:

Ser. No.	Service	Fee in AED
1	Calibration of individual reference weights of E2 category up to 10 KGs	400
2	Calibration of total reference weights of E2 category (1miligram-500 milligram)	225/piece
3	Calibration of total reference weights of E2 category (1gram-1KGs)	200/piece
4	Calibration of individual reference weights of E2 category (2KGs, 5KGs, 10KGs)	275/piece
5	Calibration of individual reference weights of E2 category (20KGs)	400
6	Calibration of individual reference weights of E2 category (50KGs)	500
7	Calibration of individual reference weights of F category up to (10KGs)	200
8	Calibration of individual reference weights of F category (1miligram-500 milligram)	200/piece
9	Calibration of individual reference weights of F category (1gram-1KGs)	200/piece
10	Calibration of individual reference weights of F category (2KGs, 5KGs, 10KGs)	200/piece
11	Calibration of individual reference weights of F category (20KGs)	250
12	Calibration of individual reference weights of F category (50KGs)	300
13	Calibration of individual reference weights of F category (100KGs, 200KGs)	450
14	Calibration of unautomated weights up to 200 grams.	500
15	Calibration of unautomated weights (over 200 grams – 10KGs).	600
16	Calibration of unautomated weights (over 10KGs – 60KGs).	750
17	Calibration of unautomated weights (over 60KGs – 120KGs).	1,500
18	Calibration of unautomated weights (over 120KGs – 500KGs).	2,000
19	Calibration of unautomated weights (over 500KGs – 1000KGs).	3,000

E-Pressure Lab Services:

Ser. No.	Service	Fee in AED
1	Calibration of tools for Testing $ {\rm pressure}$ of precision of lower than 0.6% of gradation.	350
2	Calibration of tools for Testing pressure of precision of more than 0.6% and lower than 0.1% of complete gradation.	400
3	Calibration of tools for Testing pressure of precision of more than 0.1% of complete gradation.	500
4	Calibration of tools for Testing vacuum pressure of precision of lower than 0.1% of complete gradation.	400
5	Calibration of tools for Testing vacuum pressure of precision of more than 0.6% and lower than 0.1% of complete gradation.	500
6	Calibration of tools for Testing vacuum pressure of precision of more than 0.1% of complete gradation.	600

F-Pressure Lab Services:

Ser. No.	Service	Fee in AED
1	Calibration of liquid thermometers within the limit of 80 to 270 Celsius (0.5 Celsius or greater).	400
2	Calibration of liquid thermometers within the limit of 80 to 270 Celsius (2, 0 or 0.05 Celsius).	500
3	Calibration of liquid thermometers within the limit of 80 to 270 Celsius (0.02, 0 or 0.01 Celsius).	600
4	Calibration of digital thermometers within the limit of 80 to 1200 Celsius (up to 300 Celsius).	500
5	Calibration of digital thermometers within the limit of 80 to 1200 Celsius (up to 550 Celsius).	550
6	Calibration of digital thermometers within the limit of 80 to 1200 Celsius (up to 1200 Celsius).	600
7	Calibration by using triple point cells GA 90, H20 ITS)	300
8	Calibration by using triple point cells In, Sn, ZN 90 ITS)	500
9	Calibration by using triple point cells Ag 90, AI ITS)	750
10	Calibration of relative humidity (0% - 95%) at 5 different points at one single temperature.	1,000
11	Calibration of ovens, basins and incubators and the equivalent (on site) (80-1200) Celsius.	1,800

G-Volume and Flow Lab Services:

Ser. No.	Service	Fee in AED
1	Calibration of volume equipment (weighing method) 1 millimeter – 5 liters.	400
2	Calibration of volume equipment (weighing method) 5-20 liters.	600
3	Calibration of volume equipment (weighing method) 20-100 liters.	1000
4	Calibration of volume equipment (weighing method) 100-200 liters.	1300
5	Calibration of size equipment (volume method) 0-20 liters.	500
6	Calibration of size equipment (volume method) 20-100 liters.	1000
7	Calibration of volume equipment (volume method) 100-200 liters.	1500
8	Calibration of gas flow meters – rotational meter.	1000
9	Calibration of reference gas flow meters.	1200
10	Calibration of gas flow meters: Diaphragm gas meter.	1300
11	Calibration of gas flow meters with flow limitations.	1300
12	Calibration of humid gas flow meters.	1300
13	Calibration of electromagnetic meters of waterflow.	1300
14	Calibration of taurine meters of liquid flow.	1700

H-Frequency and Time Lab Services:

Ser. No.	Service	Fee in AED
1	Calibration of simple chronometers	400
2	Calibration of meters that depend on Testing time (chronometers) up to 10 megahertz.	800

Food Stuff Test Prices Table No. 1

Description	Lab	Application: Food (F)/Water(w)	Main Method	Test Price in AED
A-Foods & Liquids				
Chemistry				
Acesulfame potassium	Chemical	F	High-performance liquid chromatography methods	250
Ash insoluble in acid	Chemical	F	Stoichiometry	100
Acid value	Chemical	F	Calibration	100
pH of honey	Chemical	F	Calibration	100
Alcohol content	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	300
Alkane of ashes	Chemical	F	Calibration	100
Alkane of ashes soluble in water	Chemical	F	Calibration	100
Aluminum	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Antimony		F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Aromatic hydrocarbons	Chemical	F	Gas chromatography – Mass Spectrometry	550
Arsenic	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	150
Artificial food flavor (Acid)	Chemical	F	Protein binding/ Thin-layer chromatography (TLC)/ paper chromatography	100
Artificial food flavor (Basic)	Chemical	F	Protein binding/ Thin-layer chromatography (TLC)/ paper chromatography	100
Artificial sweeteners	Chemical	F	High-performance liquid chromatography methods	250
Ascorbic acid	Chemical	F	Calibration	150
Aspartame	Chemical	F	High-performance liquid chromatography methods	250
Barium	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Sodium benzoate	Chemical	F	High-performance liquid chromatography methods	250
Benzoic acid	Chemical	F	High-performance liquid chromatography methods	250
Beryllium	Chemical	F	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Bicarbonate	Chemical	W	Calibration	100
Boron	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Bromate	Chemical	W	Ionic chromatography IC	150
Bromide	Chemical	W	Ionic chromatography IC	150
Sugar from tetra saccharide and trisaccharide sources using LC-EA-IRMS technique	Chemical	F	Liquid chromatography/Elements Analysis-Isotope-ratio mass spectrometry	900
Cadmium	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Caffeine	Chemical	F	High-performance liquid chromatography methods	250

Calcium	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Calcium hardness	Chemical	W	Calibration	100
Caloric value estimated by analysis	Chemical	F	Chemical analysis and calculation	400
Carbohydrates by method of calculation	Chemical	F	Calculation method	20
Carbonates	Chemical	W	Chemical analysis and calculation	100
Chlorate	Chemical	W	Ionic chromatography IC	150
Chloride	Chemical	F	Ionic chromatography IC	150
Chlorine	Chemical	W	Ionic chromatography IC	100
Chlorite	Chemical	F/W	Ionic chromatography IC	150
Chrome	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Cobalt	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Electrical conductivity in water	Chemical	W	Electrical conductivity	70
Electrical conductivity in honey	Chemical	F	Electrical conductivity	70
Conjugated linoleic acid	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
Symmetric glycine amino acids	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
Arachidonic acid content	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	350
Adipose acid compound	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	550
PUFAs (Total monounsaturated fatty acids)	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
(Total polyunsaturated fatty acids)	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
Total saturated fatty acids	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
Trans saturated fatty acids	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
Symmetric and trans glycine amino acids	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
Copper	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Crude lipid	Chemical	F	Soxhlet	150
Crude fiber	Chemical	F	Fiber Analyzer	150
Crude protein %	Chemical	F	Kjeldahl Apparatus	180
Diastase enzyme activity in honey	Chemical	F	Enzymatic	250
Egg yolk (Mayonnaise and salad)	Chemical	F	Spectrometer	100
Ergot analysis (alkaloids mycotoxin using enzyme-linked immunosorbent assay – ELISA	Chemical	F	ELISA	100
Estimation of fat after dissolving in acid	Chemical	F	Soxhlet	150
Estimation of fat using Gerber method	Chemical	F	Gerber method	120
Determination of fat using Soxhlet method	Chemical	F	Soxhlet	150
Calculation of Fat in dry matter (FDM) (dry weight basis)	Chemical	F	Calculations	150
Fluoride	Chemical	W	Ionic chromatography IC	150
Formaldehyde	Chemical	W	Chromatography gas – mass spectrometer	250
Free fatty acids	Chemical	F	Calibration	70

Fruit sugar (fructose)	Chemical	F	High-performance liquid chromatography methods	250
Glucose	Chemical	F	High-performance liquid chromatography methods	250
Gold	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	150
Estimation of hydroxymethyl in honey using spectrometer method	Chemical	F	Spectrometer – Ultraviolet ray/visible light	100
Determination of saffron pigmentations	Chemical	F	Thin-layer chromatography (TLC)/	100
Mono fatty acids	Chemical	F	Gas chromatography methods – Flame ionization detector GC-FID	450
The iodine value in fats and oils	Chemical	F	Calibration	70
The iodine value in vinegar	Chemical	F	Calibration	70
Iron	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Kreis test for rancidity	Chemical	F	Calibration	100
Testing oxidization during validity period by using Ransmite device	Chemical	F	Ransmite device	500
Conformity of products card to products in general	SMS	F	Physical inspection and documents review	150
Assessment of the card in an extensive manner, according to the requirements of regulatory authorities	SMS	F	Physical inspection and relevant documents review	400
Lactose	Chemical	F	High-performance liquid chromatography methods/Infrared ray	250
Lanthanum	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	150
Lead	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Lithium	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Lycopene in tomato paste	Chemical	F	Spectrometer – Ultraviolet ray/visible light	100
Magnesium	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Magnesium hardness	Chemical	W	Calculation method	100
Maltose	Chemical	F	High-performance liquid chromatography methods	250
Manganese	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Estimation of melamine using ELISA – Enzyme – linked immunosorbent assay – ELISA	Chemical	F	ELISA	500
Mercury	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	150
Microscopic examination	Chemical	F	Physical inspection and documents review	200
Approximate analysis of milk by using MilkoScan	Chemical	F	Infrared	100
Mineral acids in pickles	Chemical	F	Testing by weight	100
Humidity	Chemical	F	Stoichiometry	70
Humidity with Testing refractive index	Chemical	F	Testing refraction	100

Molybdenum	Chemical	F	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Nickel	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Nitrate (such as nitrate ions)	Chemical	F/W	Ionic chromatography IC	150
Nitrite (such as Nitrogen dioxide)	Chemical	F/W	Ionic chromatography IC	150
Nitrogen/Protein analysis	Chemical	F	Kjeldahl	180
Materials insoluble in salt	Chemical	F	Stoichiometry	70
Ochratoxin A	Chemical	F	High-performance liquid chromatography methods	350
Oxidation value in vinegar	Chemical	F	Calibration	80
Palladium	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Peroxide value	Chemical	W	Calibration	80
Pesticide residue (food)	Chemical	F	High-performance liquid chromatography methods/Gas chromatography/Mass spectrum detector – MS/ECD detector	1050
Pesticide residue (water)	Chemical	W	High-performance liquid chromatography methods/Gas chromatography/Mass spectrum detector – MS/ECD detector	950
Power of hydrogen (pH)	Chemical	F/W	pH meter	30
Phosphate	Chemical	W	Ionic chromatography IC	150
Phosphorus	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Platinum	Chemical	F	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	150
Potassium	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Potassium sorbate	Chemical	F	High-performance liquid chromatography methods	250
Preservatives – each material by using HPLC	Chemical	F	High-performance liquid chromatography methods	250
Preservatives and sweeteners by using high-performance liquid chromatography methods/	Chemical	F	High-performance liquid chromatography methods	350
Degree of saffron color strength	Chemical	F	Spectrometer	100
The refractive index in food	Chemical	F	Refraction measurement	70
Chlorine residual	Chemical	F/W	Colorimetry	100
Sugar	Chemical	F	High-performance liquid chromatography methods	250
Salinity	Chemical	W	Conductivity meter	100
Salt	Chemical	F	Calibration	100
Saponification value	Chemical	F	Calibration	80
Selenium	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	150
Silicon	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Silver	Chemical	F	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Sodium	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100

Sodium benzoate	Chemical	F	High-performance liquid chromatography methods	250
Sorbic acid	Chemical	F	High-performance liquid chromatography methods	250
Qualitative extinction in ultraviolet	Chemical	F	Spectrometer – ultraviolet light	200
Starch detection through Lane & Inon method	Chemical	F	Calibration	200
Starch detection – descriptive	Chemical	F	Calibration	150
Strontium	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Sugar cane	Chemical	F	High-performance liquid chromatography methods	250
Sudan red dye	Chemical	F	High-performance liquid chromatography methods/ Thin-layer chromatography (TLC)	250
Sugar in honey by using high- performance liquid chromatography methods	Chemical	F	High-performance liquid chromatography methods	250
Sulphate	Chemical	F/W	Ionic chromatography IC	150
Sulphate processed ashes	Chemical	F	Stoichiometry	130
Total Soluble Solids "T.S.S in food	Chemical	F	Refraction index	70
Theobromine	Chemical	F	High-performance liquid chromatography methods	250
Tin	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Titanium dioxide	Chemical	F	By calculating results of analyzing titanium, using ICP method	150
Total acidity	Chemical	F	Calibration	100
Mycotoxin	Chemical	F	Thin-layer chromatographer (TLC)	100
Total mycotoxin	Chemical	F	High-performance liquid chromatography methods	350
Mycotoxin G1, G2, B1, B2	Chemical	F	High-performance liquid chromatography methods	450
Total ashes	Chemical	F	Stoichiometry	90
Total Soluble Solids "T.S.S in water	Chemical	W	Stoichiometry	70
Total hardness	Chemical	F	Calibration	100
Total non-fat solids	Chemical	F	Stoichiometry by using lactometer	100
Total reducing sugars Luff-Schoorl method	Chemical	F	Calibration	150
Total reducing sugars	Chemical	F	Calibration	130
Total solids	Chemical	F	Stoichiometry	70
Total Soluble Solids "T.S.S	Chemical	W	Refractor	70
Total sugars	Chemical	F	Calibration	150
Total sugars by using high- performance liquid chromatography methods	Chemical	F	High-performance liquid chromatography methods	250
Vanadium	Chemical	W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES-MS	100
Aqueous extracts of tea	Chemical	F	Stoichiometry	100
Soluble ash in water	Chemical	F	Stoichiometry	100
Histamine	Chemical	F	High-performance liquid chromatography methods	250
Vitamins	Chemical	F	High-performance liquid chromatography methods	250
Zinc	Chemical	F	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry	100
Color	Chemical	W	Testing by weight	25

Turbidity	Chemical	W	Photometry	30
Smells	Chemical	W	Sensory organ	30
Taste	Chemical	W	Sensory organ	30
Ammonia (Ammonia and ammonia ions)	Chemical	W	Ionic chromatography IC	150
Total organic carbon	Chemical	W	Digestive/Spectrum	150
Trichloroethylene (TCE)	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Tetrachloromethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Tetrachloroethene	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
1,2-Dichloroethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Gasoline	Chemical	W	Gas chromatography (GC) – Mass spectrometer	155
Benzo[a]pyrene	Chemical	W	Gas chromatography (GC) – Mass spectrometer	275
Dichloromethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Hexachlorobenzene (HCB)	Chemical	W	Gas chromatography (GC) – Mass spectrometer	155
1,2-Dichloroethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Toluene	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
1,2-Dichlorobenzene	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
1,4-Dichlorobenzene	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Vinyl chloride	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Bromomethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Bromochloromethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Chloroform	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Dibromochloromethane	Chemical	W	Gas chromatography (GC) – Mass spectrometer	115
Trihalomethanes	Chemical	W	Gas chromatography (GC) – Mass spectrometer	152
Qualitative detection for cheating in skimmed milk powder	Chemical	W	Gas chromatography (GC) – Mass	-

Microbiology & Molecular Biology				
Escherichia coli (E Coli)	Microbiology	W	Membrane filtration	80
Colonic bacteria (Total coliforms)	Microbiology	W	Membrane filtration	80
Enterococci	Microbiology	W	Membrane filtration	80
Pseudomonas aeruginosa	Microbiology	W	Membrane filtration	100
Sulphite reducing clostridia	Microbiology	W	Membrane filtration	80
Legionella	Microbiology	W	Detection	300
ACC (22G) Heterotrophic bacteria	Microbiology	F	Deployment	80
ACC (22G) Heterotrophic bacteria	Microbiology	F	Deployment	80
Bacillus cereus spore-forming rod- shaped bacteria	Microbiology	F	Deployment	80
Clostridium botulinum	Microbiology	F	Detection	300
Clostridium perfringens	Microbiology	F	Anaerobic count	100
Cronobacter sakazakii	Microbiology	F	Detection	200

E. coli o157	Microbiology	F	Detection	250
Enterobacteriaceae	Microbiology	F	Deployment	80
Streptococci	Microbiology	F	Deployment	80
Listeria monocytogenes	Microbiology	F	Detection	160
Mould	Microbiology	F	Deployment	80
Salmonella spp bacteria	Microbiology	F	Detection	160
E. coli	Microbiology	F	Deployment	100
Coliform	Microbiology	F	Most Probable Number (MPN)/ Deployment and detection	80
E coli (IDEXX)	Microbiology	W	Most Probable Number (MPN)/ Deployment and detection	150
E coli (IDEXX)	Microbiology	W	IDEXX device	150
Staphylococcus aureus	Microbiology	F	IDEXX device	80
Campylobacter	Microbiology	F	Deployment	250
Vibrio parahaemolyticus	Microbiology	F	Detection	100
Vibrio cholera	Microbiology	F	Detection	100
Yeast	Microbiology	F	Deployment	80
Shigella spp	Microbiology	F	Detection	150
Salmonella spp (VIDAS) method	Microbiology	F	Detection/ VIDAS device	280
E. coli o157 (VIDAS) method	Microbiology	F	Detection/ VIDAS device	320
Listeria monocytogenes (VIDAS) method	Microbiology	F	Detection/ VIDAS device	250
Campylobacter (VIDAS) method	Microbiology	F	Detection/ VIDAS device	150
Staphylococcus aureus Toxin	Microbiology	F	Detection/ VIDAS device	280
Establishing fish species	Molecular Biology	F	DNA extraction using real time PCR method	550
Testing genetically modified food	Molecular Biology	F	DNA extraction using real time PCR method	600
Establishing type of meat	Molecular Biology	F	DNA extraction using real time PCR method	550
Determination of meat types	Molecular Biology	F	DNA extraction using real time PCR method	550
Detection of DNA from pork products	Molecular Biology	F	DNA extraction using real time PCR method	550

Radioactivity Analysis in Drinking Water					
Caesium-134	Radioactive	W	Gamma ray spectrometer	300	
Caesium-137	Radioactive	W	Gamma ray spectrometer	300	
Iodine-131	Radioactive	W	Gamma ray spectrometer	300	
Cadmium-109	Radioactive	W	Gamma ray spectrometer	300	
Curium -144	Radioactive	W	Gamma ray spectrometer	400	
Magnesium -54	Radioactive	W	Gamma ray spectrometer	300	
Ruthenium –103	Radioactive	W	Gamma ray spectrometer	300	
Tin –103	Radioactive	W	Gamma ray spectrometer	300	
Cobalt – 60	Radioactive	W	Gamma ray spectrometer	300	
Americium -141	Radioactive	W	Gamma ray spectrometer	300	
Potassium -40	Radioactive	W	Gamma ray spectrometer	300	
Radium –226	Radioactive	W	Gamma ray spectrometer	500	
Total Alpha Radium	Radioactive	W	Gas proportional counter	400	
Uranium	Radioactive	W	Alpha spectrum measurement	600	
Plutonium –239	Radioactive	W	Alpha spectrum measurement	600	
Thorium –230	Radioactive	W	Alpha spectrum measurement	600	
Polonium –210	Radioactive	W	Alpha spectrum measurement	900	

Total Alpha	Radioactive	W	Gas proportional counter	300
Total Beta	Radioactive	W	Gas proportional counter	300
Total Alpha	Radioactive	W	Liquid scintillation counter	600
Total Beta	Radioactive	W	Liquid scintillation counter	600
Tritium-3	Radioactive	W	Liquid scintillation counter	300
Carbon-14	Radioactive	W	Liquid scintillation counter	300
Strontium-89	Radioactive	W	Liquid scintillation counter	600
Strontium-90	Radioactive	W	Liquid scintillation counter	600
Radon	Radioactive	W	Liquid scintillation counter	400
Radon	Radioactive	W	Gamma spectrometer	300
Other isotopes	Radioactive	W	-	300

Radioactive Analysis in Foodstuff & Agricultural Products					
Cesium-134	Radioactive	F	Gamma ray spectrometer	300	
Cesium-137	Radioactive	F	Gamma ray spectrometer	300	
Iodine-131	Radioactive	F	Gamma ray spectrometer	300	
Potassium-40	Radioactive	F	Gamma ray spectrometer	300	
Cadmium-109	Radioactive	F	Gamma ray spectrometer	300	
Corium-144	Radioactive	F	Gamma ray spectrometer	300	
Magnesium-54	Radioactive	F	Gamma ray spectrometer	300	
Ruthenium-103	Radioactive	F	Gamma ray spectrometer	300	
Tin-103	Radioactive	F	Gamma ray spectrometer	300	
Strontium-89	Radioactive	F	Liquid scintillation counter	600	
Strontium-90	Radioactive	F	Liquid scintillation counter	600	
Polonium-210	Radioactive	F	Gamma ray spectrometer	900	
Other isotopes	Radioactive	F	-	300	

Analysis of Radioactivity in Environ	Analysis of Radioactivity in Environmental Specimen s (water, Drainage, Air (infiltrators) and Solid Specimen s					
Cesium-134	Radioactive	W	Gamma ray spectrometer	300		
Cesium-137	Radioactive	W	Gamma ray spectrometer	300		
Iodine-131	Radioactive	W	Gamma ray spectrometer	300		
Cadmium-109	Radioactive	W	Gamma ray spectrometer	300		
Corium-144	Radioactive	W	Gamma ray spectrometer	300		
Magnesium-54	Radioactive	W	Gamma ray spectrometer	300		
Ruthenium-103	Radioactive	W	Gamma ray spectrometer	300		
Tin-103	Radioactive	W	Gamma ray spectrometer	300		
Cobalt-60	Radioactive	W	Gamma ray spectrometer	300		
Americium-141	Radioactive	W	Gamma ray spectrometer	300		
Potassium-40	Radioactive	W	Gamma ray spectrometer	300		
Radium-226	Radioactive	W	Gamma ray spectrometer	300		
Radium-226 and Radium-228	Radioactive	W	Liquid scintillation counter	300		
Total Radium Alpha	Radioactive	W	Liquid scintillation counter	300		
Uranium	Radioactive	W	Alpha ray spectrometer	400		
Plutonium-239	Radioactive	W	Alpha ray spectrometer	400		
Thorium-230	Radioactive	W	Alpha ray spectrometer	400		
Plutonium-201	Radioactive	W	Alpha ray spectrometer	400		
Total Alpha	Radioactive	W	Liquid scintillation counter	300		
Total Beta	Radioactive	W	Liquid scintillation counter	300		
Total Alpha	Radioactive	W	Liquid scintillation counter	300		

Total Beta	Radioactive	W	Liquid scintillation counter	300
Tritium-3	Radioactive	W	Liquid scintillation counter	300
Carbon-14	Radioactive	W	Liquid scintillation counter	300
Strontium-89	Radioactive	W	Liquid scintillation counter	300
Strontium-90	Radioactive	W	Liquid scintillation counter	300
Other isotopes	Radioactive	W	-	300

Analysis of Radioactivity in Naturally occurring radiative material (NORM) such as (oil, gas and underground water products)					
Uranium-238	Radioactive	F/W	Alpha ray spectrometer	800	
Thorium-228	Radioactive	F/W	Alpha ray spectrometer	800	
Thorium-230	Radioactive	F/W	Alpha ray spectrometer	800	
Thorium-232	Radioactive	F/W	Alpha ray spectrometer	800	
Lead-210	Radioactive	F/W	Alpha ray spectrometer	800	
Lead-212	Radioactive	F/W	Liquid scintillation counter	800	
Lead-214	Radioactive	F/W	Liquid scintillation counter	800	
Radium-226	Radioactive	F/W	Liquid scintillation counter	800	
Radium-228	Radioactive	F/W	Liquid scintillation counter	800	
Potassium-40	Radioactive	F/W	Gamma ray spectrometer	800	
Bismuth-212	Radioactive	F/W	Liquid scintillation counter	800	
Bismuth-214	Radioactive	F/W	Liquid scintillation counter	800	
Actinium-228	Radioactive	F/W	Liquid scintillation counter	800	

Radon gas tests	Radon gas tests			
Radon air tests	Radioactive	Air	Gama spectrum	400
	Radioactive	Air	Liquid scintillation counter	450
	Radioactive	W	Gama spectrum	400
	Radioactive	W	Liquid scintillation counter	450
Radioactive safety tests	Radioactive	W		
Screening test	Radioactive	F/W	Liquid scintillation counter	300
Leakage test	Radioactive	F/W	Liquid scintillation counter	400

Food irradiation testing				
Detection of irradiated foods by Photo stimulated Luminescence (PSL)	Radioactive	F/W	Photo stimulated Luminescence (PSL) method	300
Detection of irradiated foods by calibrated (PSL)	Radioactive	F/W	Calibrated PSL	300
ESR (Electronic screening resonation) detection of irradiated meat	Radioactive	F/W	Electronic Screening Resonance (ESR) method	500
ESR (Electronic screening resonation) detection of irradiated cellulose	Radioactive	F/W	Electronic Screening Resonance (ESR) method	500
ESR (Electronic screening resonation) detection of irradiated sugars	Radioactive	F/W	Electronic Screening Resonance (ESR) method	500

Analyses of Food Packaging Materials and Food Contact Materials				
Qualitative migration of primary aromatic amines in water simulators	Chemical	F/W	Spectroscopic analysis	550
Complete migration in olive oil by full immersion	Chemical	F/W	Stoichiometry – Gas chromatography methods – Flame ionization detector GC-FID	700
Qualitative migration in water simulators by full immersion	Chemical	F/W	Stoichiometry	450
	Chemical	F/W	Stoichiometry – Gas chromatography methods – Flame ionization detector GC-FID	700

Complete migration in olive oil by unilateral contact	Chemical	F/W	Stoichiometry	450
Complete and qualitative migration by using (MODIFIED polyphenylene oxide as a stimulator	Chemical	F/W	Stoichiometry	450
Heavy metals extractable in aqua extracts (5 metals)	Chemical	F/W	Inductively coupled plasma – Optical Emission Spectrometry – Mass Spectrometry ICPO- OES	700
Qualitative migration of primary aromatic amines PAA in Isooctane	Chemical	F/W	Spectroscopic analysis	550
Determination of Polyethylene terephthalate	Chemical	F/W	High-performance liquid chromatography methods	600
Effectiveness of antimicrobials in polymers and plastics	Microbiology	F/W	Effectiveness testing	450
Microbial resistance in polymers and plastics	Microbiology	F/W	Resistance testing	6500

B-Laboratory Tests of Environment Laboratory				
Physical Tests	Physical		Physical Inspection	50
Physical Test				

Chemistry				
Nitrite	Chemical	Water	Ionic chromatography IC	100
Nitrate	Chemical	Water	Ionic chromatography IC	100
Phosphate	Chemical	Water	Ionic chromatography IC	100
Ammonia	Chemical	Water	Ionic chromatography IC	100
Total hardness	Chemical	Water	Chemical analysis by using the inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP-OES-MS + calculation	220
Calcium hardness	Chemical	Water	Chemical analysis by using the inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP-OES-MS + calculation	120
Magnesium hardness	Chemical	Water	Chemical analysis by using the inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP-OES-MS + calculation	120
Cadmium in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Copper in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Chrome in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Cobalt in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Lead in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Zinc in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Magnesium in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Iron in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100
Nickel in water	Chemical	Water	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	100

Mercury in water	Chemical	Water	Mercury analyzer	180
Silicate	Chemical	Water	Chemical analysis by using the inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP-OES-MS + calculation	100
Total solids	Chemical	Water		50
Vital oxygen	Chemical	Water	Sensitive vital oxygen scale	200
Electrical conduction	Chemical	Water	Electrical conduction Testing device	30
Power of hydrogen (pH)	Chemical	Water	Power of hydrogen (pH) meter	30
Total dissolved solids (TDS)	Chemical	Water	Electrical conduction Testing device	30
Total 20-polychlorinated & polychlorinated biphenyl (PCB)	Chemical	Water	Gas chromatography – Mass spectrometry	800
Total petroleum hydrocarbon	Chemical	Water	Gas chromatography methods – Flame ionization detector GC-FID	800
Copper in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Chrome in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Cobalt in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Lead in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Zinc in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Magnesium in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Iron in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Nickel in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission - Mass spectrometry ICP -MS	150
Mercury in sediments	Chemical	Sediments	The inductively coupled plasma (ICP) – Atomic emission – Mass spectrometry ICP -MS	230

Microbiology				
Colon bacteria (Total coliforms	Microbiology	Water	IDEXX Device	150
Fecal coliforms	Microbiology	Water	IDEXX Device	150
Enterococci	Microbiology	Water	IDEXX Device	150

C-Laboratory Tests of Beauty product	ts and Perfumes			
Chemistry				
Toxic metals in beauty products (cadmium – chromium – lead-arsenic – mercury)	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	400
Toxic metals in beauty products- cadmium	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	100
Toxic metals in beauty products- chromium	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	100
Toxic metals in beauty products– lead	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	100
Toxic metals in beauty products– arsenic	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	100

Toxic metals in beauty products– mercury	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	100
Inorganic filters for ultraviolet light in beauty products-Titanium	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	400
Inorganic filters for ultraviolet light in beauty products-Zinc	Chemical	Beauty products	The inductively coupled plasma- Optical Emission Spectrometry ICP-OES	400
Toxic metals in beauty products(cadmium – chromium – lead-arsenic – mercury)	Chemical	Beauty products	The inductively coupled plasma- Optical Mass Spectrometry ICP-MS	400
Preservatives in beauty products-5 variables)	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	400
Preservatives in beauty products-5 variables)	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	250
Preservatives in beauty products- Benzoic Acid	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	250
Preservatives in beauty products- Benzoic Acid-Methyl-4- Hydroxybenzoate	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	250
Preservatives in cosmetic products- n-Propyl- 4-Hydroxybenzoate	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	250
Preservatives in beauty products- n-Propyl- 4-Hydroxybenzoate	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	250
Hydroquinone in beauty products	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	300
1.4 Dioxane in beauty products	Chemical	Beauty products	Gas Chromatography -Mass Spectrometry GC MS	600
Hydrogen peroxide in aquatic beauty products	Chemical	Beauty products	Calibration	300
Power of Hydrogen (pH) in beauty products	Chemical	Beauty products	Power of Hydrogen Device	150
Perfumes allergens	Chemical	Beauty products	Gas Chromatography -Mass Spectrometry GC MS-IFRA method	1280
Alcohol in beauty products used in mouth – Methanol, Ethanol, Isopropanol	Chemical	Beauty products	Gas Chromatography -Mass Spectrometry GC MS	400
Triclosan (IRGASAN) in beauty products	Chemical	Beauty products	High Performance Liquid Chromatography/Ultraviolet HPLC/UV	600
Formaldehyde-Pre-Column Derivatization DNPH	Chemical		-	600
Formaldehyde-Post Column Derivatization DNPH	Chemical		EU Cosmetic directive 90 207 EEC	600
NDELA (Nitrosodiethanolamvne) (availability or unavailability) in beauty products	Chemical		ISO 10130	800
EUROLAB Laboratuvar – testing and determination of EUROLAB Laboratuvar in beauty products (European Commission System)	Chemical			800

Microbiology			
Detection of Candida albicans– Quality control	Microbiology	EN ISO 18416 method	300
Detection of E coli – Quality control	Microbiology	EN ISO 21150 method	300
Detection of Pseudomonas aeruginosa - Quality control	Microbiology	EN ISO 22717 method	300
Detection of Staphylococcus aureus – Quality control	Microbiology	EN ISO 22718 method	300
Detection and calculation of yeast and mold in beauty products – Quality control	Microbiology	EN ISO 21149 method	180
Aerobic Plate Count (APC) – Quality control	Microbiology	EN ISO 11930 method	180

Testing effectiveness of preservatives in beauty products – 4 strains – challenge test	Microbiology	EN ISO 11930 method		800
--	--------------	------------------------	--	-----

Laboratory Test of Medical Products Fees

Ser. No.	Test Service	Test fee of first specimen in AED	Test fee of second specimen and more in AED	Test Reference
According	to Pharmacopoeia			
1	Detection by High performance liquid chromatography (HPLC) method	2,500	800	Pharmacopoeia
2	Detection by Thin-layer chromatography (TLC) method	2,000	600	Pharmacopoeia
3	Detection by infrared method	1,100	400	Pharmacopoeia
4	Detection by liquid chromatography – LC MSMS method	3,000	1,000	Pharmacopoeia
5	Detection by gas chromatography method (HC)	2,500	800	Pharmacopoeia
6	Detection by gas chromatography – Mass spectrometry analysis method	2,600	1,000	Pharmacopoeia
7	Testing active pharmaceutical ingredients in tablets - High performance liquid chromatography (HPLC) method	4,200	1,000	Pharmacopoeia
8	Loss on drying amount	700	350	Pharmacopoeia
9	Soluble amount	600	600	Pharmacopoeia
10	Lysis: United States Pharmacopeia (USP) method - 1	4,200	600	Pharmacopoeia
11	Lysis: United States Pharmacopeia (USP) method - 2	4,000	600	Pharmacopoeia
12	Decomposition – tablets	1,000	400	Pharmacopoeia
13	Decomposition – suppository	1,200	500	Pharmacopoeia
14	Friability	1,500	450	Pharmacopoeia
15	Dose homogeneity test – chromatography	4,200	1,500	Pharmacopoeia
16	Confirmatory test – liquid chromatography – Mass spectrometric analysis	6,000	1,200	Pharmacopoeia
17	Confirmatory test – liquid chromatography – Mass spectrometric analysis	6,000	1,00	Pharmacopoeia
18	Tablets volatilization test – gas chromatography HC method	6,000	1,000	Pharmacopoeia
19	Crude materials volatilization test – gas chromatography HC method	5,500	900	Pharmacopoeia
20	Tablet hardness testing	800	300	Pharmacopoeia
21	Weight fluctuation	800	250	Pharmacopoeia
22	Width/thickness	300	150	Pharmacopoeia
23	Chromatography detection of syrup and suspension medicine	2,500	800	Pharmacopoeia
24	Active pharmaceutical ingredients of syrup and suspension test – liquid chromatography	5,500	1,000	Pharmacopoeia
25	Dose homogeneity in suspension (volume)	6,000	1,500	Pharmacopoeia
26	Viscosity	1,500	450	Pharmacopoeia
27	Condensation – powder	1,200	500	Pharmacopoeia
28	Optical rotation	1,200	350	Pharmacopoeia
29	Power of hydrogen (pH)	450	100	Pharmacopoeia
30	Active pharmaceutical ingredients test – cream- High Performance Liquid Chromatography	4,500	1,200	Pharmacopoeia
31	Active pharmaceutical ingredients test – suppository- High Performance Liquid Chromatography	4,500	1,200	Pharmacopoeia
32	Suspension test – liquid Chromatography method	5,000	1,200	Pharmacopoeia
33	Suspension test – powder Chromatography method	4,500	1,200	Pharmacopoeia
34	Injection materials test - High Performance Liquid Chromatography method	4,500	1,000	Pharmacopoeia
35	Retesting - High Performance Liquid Chromatography	3,500	1,200	Pharmacopoeia

36	Retesting -Thin-layer chromatography (TLC) method	1,800	600	Pharmacopoeia
37	Retesting - High Performance Liquid Chromatography – Mass spectrometry analysis method	3,00	900	Pharmacopoeia
38	Retesting by infrared	1,100	350	Pharmacopoeia
39	Residuals resulting from combustion	400	200	Pharmacopoeia
40	Normative test (Quantitative analysis)	1,500	400	Pharmacopoeia
41	Bromide detection	600	300	Pharmacopoeia
42	Calcium after extraction detection	600	300	Pharmacopoeia
43	Acidity detection	600	300	Pharmacopoeia
44	Sulphate detection	600	300	Pharmacopoeia
45	Sulphite detection	600	300	Pharmacopoeia
46	Sodium detection	600	300	Pharmacopoeia
47	Mercury detection	700	400	Pharmacopoeia
48	Manganese detection	600	250	Pharmacopoeia
48	Magnesium detection	600	250	Pharmacopoeia
50	Lithium detection	600	300	Pharmacopoeia
51	Lead detection	700	300	Pharmacopoeia
52	Lactate detection	600	300	Pharmacopoeia
53	Iron detection	600	250	Pharmacopoeia
54	Iodide detection	600	300	Pharmacopoeia
55	Borate detection	600	250	Pharmacopoeia
56	Bismuth detection	600	250	Pharmacopoeia
57	Bicarbonate detection	600	250	Pharmacopoeia
58	Barium detection	600	250	Pharmacopoeia
59	Antimony detection	700	350	Pharmacopoeia
60	Ammonium detection	600	250	Pharmacopoeia
61	Aluminum detection	700	250	Pharmacopoeia
62	Acetate detection	700	250	Pharmacopoeia
63	Thiosulfate detection	700	250	Pharmacopoeia
64	Thiocyanate detection	700	250	Pharmacopoeia
65	Silver detection	700	200	Pharmacopoeia
66	Potassium detection	700	200	Pharmacopoeia
67	Phosphate detection	700	200	Pharmacopoeia
68	Permanganate detection	700	200	Pharmacopoeia
69	Oxalate detection	700	250	Pharmacopoeia
70	Nitrite detection	600	250	Pharmacopoeia
71	Hydrophosphate detection	700	250	Pharmacopoeia
72	Copper detection	700	250	Pharmacopoeia
73	Cobalt detection	600	250	Pharmacopoeia
74	Citrate detection	700	250	Pharmacopoeia
75	Chloride detection	700	300	Pharmacopoeia
76	Chlorate detection	700	300	Pharmacopoeia
77	Carbonate detection	650	300	Pharmacopoeia
78	Calcium detection	600	250	Pharmacopoeia
79	Heavy metals method 1	1,000	450	Pharmacopoeia
80	Heavy metals method 2	2,000	1,000	Pharmacopoeia
81	Heavy metals method 3	3,500	1,000	Pharmacopoeia
82	Veritying testing method/US Pharmacopoeia (USP) – category 1	80,000	Using pricing mechanism	Pharmacopoeia

83	Verifying testing method/US Pharmacopoeia (USP) – category 2 – Quantitative method	90,000	Using pricing mechanism	Pharmacopoeia
84	Verifying testing method/US Pharmacopoeia (USP) – category 2 – testing borders	50,000	Using pricing mechanism	Pharmacopoeia
85	Verifying testing method/US Pharmacopoeia (USP) – category 3 – performance	80,000	Using pricing mechanism	Pharmacopoeia
86	Verifying testing method/US Pharmacopoeia (USP) – category 4 – detection	50,000	Using pricing mechanism	Pharmacopoeia
87	Method transfer- High Performance Liquid Chromatography (HPLC)	80,000	Using pricing mechanism	Pharmacopoeia
88	Method transfer-Gas chromatography method (GC HS)	80,000	Using pricing mechanism	Pharmacopoeia
89	Method transfer- Gas chromatography method	70,000	Using pricing mechanism	Pharmacopoeia
90	Method transfer- Thin-layer chromatography (TLC) method	70,000	Using pricing mechanism	Pharmacopoeia
91	Method transfer-Ultraviolet light	40,000	Using pricing mechanism	Pharmacopoeia
92	Water consistency	1,500	400	Pharmacopoeia
93	Consultation per hour	1,600	Using pricing mechanism	Pharmacopoeia
94	Technical consultation per hour	800	Using pricing mechanism	Pharmacopoeia

*If the test is conducted for more than one specimen in the same order, test fees shall be calculated as follows:

Test fees for first specimen + (test fees of second specimen X (number of specimen s tested - test fees of first specimen)

Laboratory Test of Water Products Fees

Ser. No.	Service	Fee in AED	Method in AED	Standard		
Industrial /Mat	Industrial /Materials Tests					
1	Light bulb - Chandelier film thickness by SEM	130	SOP	DMA		
2	Home bathrooms: Acetic acid resistance	65	4305/198	BS/EN		
3	Home bathrooms: Alcohol resistance	65	4305/198	BS/EN		
4	Home bathrooms: Ammonia resistance	65	4305/198	BS/EN		
5	Home bathrooms: Candidiasis resistance	65	4305/198	BS/EN		
6	Home bathrooms: Citric acid resistance	65	4305/198	BS/EN		
7	Home bathrooms: Detergents acid resistance	65	4305/198	BS/EN		

Chemical/Pain	t and Marks			
8	Roadside marks: Calcium carbonate and internal fillings	189	Analytical	AASHTO
9	Roadside marks: Titanium dioxide	273	Spectrometry	AASHTO
10	Road surface marking paint: link content	163	M249	AASHTO
11	Road surface marking paint: crystal aggregate content	65	M249	AASHTO
12	Road surface marking paint: crystal aggregate floating in xylene	78	M247	AASHTO
13	Road surface marking paint: crystal aggregate gradation	143	M247	AASHTO
14	Road surface marking paint: crystal aggregate gradation after extraction	143	M247	AASHTO
15	Road surface marking paint: Specific gravity -Method A	98	M249	AASHTO
16	Paint: Emulsion/enamel/Epoxy: Color matching	137	D 4086	ASTM
17	Paint: Emulsion/enamel/Epoxy: Colorimeter	182	D 2244	ASTM
18	Paint: Emulsion/enamel/Epoxy: Symmetry	137	D 562	ASTM
19	Paint: Emulsion/enamel/Epoxy: Fineness	137	D 1210	ASTM
20	Paint: Emulsion/enamel/Epoxy: Salt spray residence	455	B 117	ASTM
21	Roadside stone paint: solid/hard content by (volume ratio)	195	3900PartA10	BS
22	Paint: Emulsion/enamel/Epoxy: Crack testing	195	3900: Pt-E4	BS
23	Paint: Emulsion/enamel/Epoxy: fineness	137	390: Pt-C6	BS
24	Paint: Emulsion/enamel/Epoxy: Salt spray residence	455	390: Pt-F12	BS
25	Paint: Emulsion/Enamel/Epoxy: Volatile and nonvolatile material	182	390: Pt-B2	BS

26 Paint: Emulsion/Enamel/Epoxy: Color matching 13	137	950	BS
27 Paint: Emulsion/Enamel/Epoxy: Fineness 13	137	1524	ISO

Industrial/Pair	nt and Marks			
28	Road surface marking paint: Low temperature pressure resistance	260	M249	AASHTO
29	Road surface marking paint: Softening point – Ring and ball	182	M249	AASHTO
30	Road surface marking paint: density	137	D1475	ASTM
31	Paint: Emulsion/enamel/Epoxy: Abrasion resistance	364	D968	ASTM
32	Paint: Emulsion/enamel/Epoxy: Adhesion resistance	137	D4541	ASTM
33	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	B244	ASTM
34	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	B499	ASTM
35	Paint: Emulsion/enamel/Epoxy: Elasticity	364	D1737	ASTM
36	Paint: Emulsion/enamel/Epoxy: Luminosity	137	D523	ASTM
37	Paint: Emulsion/enamel/Epoxy: Viscosity (method B)	182	D562	ASTM
38	Paint: Emulsion/enamel/Epoxy: Humid film thickness	52	D1212	ASTM
39	Paint: Emulsion/enamel/Epoxy: Elasticity	364	3900:Pt-E1	BS
40	Paint: Emulsion/enamel/Epoxy: Luminosity	137	3900:Pt-D5	BS
41	Paint: Emulsion/enamel/Epoxy: Scratchproof	182	3900:Pt-E2	BS
42	Paint: Emulsion/enamel/Epoxy: Rigid surface drying time	182	-	BS
43	Paint: Emulsion/enamel/Epoxy: Humid film thickness	52	3900:Pt-D5	BS
44	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	5411	BS
45	Paint: Emulsion/enamel/Epoxy: Density	137	DMA-SOP	DIN
46	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	50981	DIN
47	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	50982	DIN
48	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	50984	DIN
49	Paint: Emulsion/enamel/Epoxy: Elasticity	364	53152	DIN
50	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	2178	ISO
51	Paint: Emulsion/enamel/Epoxy: Dry film thickness	137	2360	ISO
52	Paint: Emulsion/enamel/Epoxy: Elasticity	364	1519	ISO
53	Paint: Emulsion/enamel/Epoxy: Luminosity	137	2813	ISO
54	Paint: Emulsion/enamel/Epoxy: Humid film thickness	52	2808	ISO

Industrial/Hea	Industrial/Health Products					
55	Health – Bathtub – Acrylic dimensions	72	DMA-SOP	ASTM		
56	Health – Bathtub – Acrylic shockproof	299	DMA-SOP	ASTM		
57	Health – Bathtub – Mass	39	DMA-SOP	ASTM		
58	Health – Bathtub – Tensile strength	449	DMA-SOP	ASTM		
59	Health – Bathtub – Optical test	150	DMA-SOP	ASTM		
60	Health – Coated metal sewer basin – external and internal film coating	150	DMA-SOP	ASTM		
61	Health – Coated metal sewer basin – external and internal film coating	150	DMA-SOP	ASTM		
62	Health – Coated metal sewer basin – Total dimensions of the basin and sewer	72	DMA-SOP	ASTM		
63	Health – Coated metal sewer basin – Mass except side décor and protection film	39	DMA-SOP	ASTM		
64	Health – Coated metal basin – Basin and sewer film thickness	85	DMA-SOP	ASTM		
65	Health – Painted water tap/Mixture: Total system mass	39	DMA-SOP	ASTM		
66	Health – Painted water tap/Mixture: Paint thickness	111	DMA-SOP	ASTM		
67	Health: Stainless steel satellite dish – Mass except side décor and protection film	39	DMA-SOP	ASTM		
68	Health: Stainless steel satellite dish – Total dimensions	72	DMA-SOP	ASTM		

69	Health: Stainless steel satellite dish – Film thickness	85	DMA-SOP	ASTM
70	Health: Stainless steel basin– Basin film thickness	65	DMA-SOP	ASTM
71	Health: Stainless basin– Total dimensions – Basin with sewer	98	DMA-SOP	ASTM
72	Health: Stainless steel drainage– Basin film thickness	65	DMA-SOP	ASTM
73	Health: Stainless steel basin– Mass except side décor and protection film, etc.	39	DMA-SOP	ASTM
74	Porcelain: Dimensions of materials (health) equipment	65	3402 Appdxx-	BS
75	Porcelain: Mass of materials (health) equipment	33	3402 Appdxx-	BS
76	Porcelain: Materials weakness resistance (health equipment)	221	3402 Appdxx-B	BS
77	Porcelain: Health materials (equipment) quality by optical test	150	3402	BS
78	Porcelain: Water absorption in health materials (equipment)	176	3402, Appdx-A	BS
79	Health: Equipment weakness	520	3402	BS
80	Health: (Health) materials resistance to acetic acid	228	3402	BS
81	Health: (Health) materials resistance to combustion	117	3402	BS
82	Health: (Health) materials resistance to acetic acid	228	3402	BS
83	Health: (Health) materials resistance to cleaning agents/materials	228	3402	BS
84	Health: Water absorption in materials (equipment)	520	3402	BS
85	Health – Bathtub – Acrylic tub dimensions	72	BS 4305/EN 198	BS
86	Health – Bathtub – Acrylic tub shockproof	299	BS 4305/EN 198	BS
87	Health – Bathtub – Acrylic mass	39	BS 4305/EN 198	BS
88	Health – Bathtub – Tensile strength	449	BS 2782, M-301-D	BS
89	Health – Bathtub – Optical test	150	BS 4305/EN 198	BS

Chemical/Health Products					
90	Health: Equipment resistance to hydrochloric acid	228	3402	BS	
91	Health: Equipment resistance to Sodium hydroxide	228	3402	BS	
92	Health: Equipment resistance to Sodium citrate	228	3402	BS	
93	Health: Equipment resistance to sulfuric acid	228	3402	BS	
94	Health: Equipment resistance to stains -Methyl acetate	117	3402	BS	
95	Health: Equipment resistance to stains -Carbon tetrachloride	117	3402	BS	
96	Health: Equipment resistance to stains - Hydrogen peroxide	117	3402	BS	
97	Health: Equipment resistance to stains – Iodine ethanol	117	3402	BS	
98	Health: Equipment resistance to stains - Methylene blue	117	3402	BS	
99	Health: Equipment resistance to stains - Sodium hypochlorite	117	3402	BS	

Laboratory Test of Building Materials Fees

Ser. No.	Service	Fee in AED	Method in AED	Standard
Asphalt/Bitumen				
1	Studying rheological properties of the asphalt binder by using kinetic bending rheometer: rheometer to measure flow of the matter	910	D7175-08	ASTM
2	Testing curvature of creep rigidity for asphalt binder factor by using curved column rheometer	325	D6648-08	ASTM
3	Testing curvature of creep rigidity for asphalt binder factor by using curved column rheometer	325	T313-12	AASHTO
4	Compressed asphalt mixture resistance to the damage resulting from humidity	828	T283	AASHTO
5	Standard of water determination device by distillation	286	E123-03	ASTM
6	Testing binder factor in penetration decrease after loss by temperature	377	D5-IP45	ASTM
7	Testing binder factor in penetration decrease after loss by temperature	377	T49	AASHTO
8	Testing binder elasticity	299	D113	ASTM
9	Testing binder elasticity	299	T51	AASHTO
10	Testing binder elasticity of residuals after loss by temperature	462	D113	ASTM
11	Testing binder elasticity of residuals after loss by temperature	462	T51	AASHTO
12	Thermal and aerial binder impact – Testing thin film in the oven (Testing the damaged film in the oven)	163	D1754/D2872	ASTM
13	Thermal and aerial binder impact – Testing thin film in the oven (Testing the damaged film in the oven)	163	D2872-12e1	ASTM
14	Thermal and aerial binder impact – Testing thin film in the oven (Testing the damaged film in the oven)	163	T240-13	AASHTO
15	Bituminous binder at flashpoint – Open cup method – Cleveland	150	D92-12b	ASTM
16	Bituminous binder at flashpoint – Open cup method – Cleveland	150	T48-06	AASHTO
17	Loss of binder through temperature	163	T47	AASHTO
18	Loss of binder through temperature – Ratio of decrease in penetration	345	2000:Pt-45	BS
19	Loss of binder through temperature – Ratio of decrease in mass	130	2000:Pt-45	BS
20	Binder penetration	215	D5-IP49	ASTM
21	Binder penetration	215	T49	AASHTO
22	Binder penetration	280	2000:Pt-49	BS
23	Softening point of binder – Ring and ball device	182	D36/D36M-12	AASHTO
24	Softening point of binder – Ring and ball device	182	T53	AASHTO
25	Softening point of binder – Ring and ball device	182	2000:Pt-58	BS
26	Softening point of binder – Ring and ball device	182	D36 -IP 58	ASTM
27	Testing solubility of binder in trichloroethylene	234	2000:Pt-47	BS
28	Testing solubility of binder in trichloroethylene	234	D2042	ASTM
29	Testing solubility of binder in trichloroethylene	234	Т 44	AASHTO
30	Testing specific gravity of hinder	169	D70	ASTM
31	Testing specific gravity of binder	169	T228	ΔΔSHTO
32	Binder viscosity - Viscometer to measure viscosity (Sayholt)	273	1220	ASTM
22	Binder viscosity - Viscometer to measure viscosity (Saybolt)	273	772	
33	Binder viscosity - Viscometer to measure viscosity (Saybolt)	275	F 102/ F102M	AASHTU
34	high temperature	325	- 93	ASTM
35	resting water content of binder by distillation	286	2000:Pt-	BS
36	lesting water content of binder by distillation	286	D244	ASTM
37	Testing water content of binder by distillation	286	D95-13e1	ASTM
38	Testing water content of binder by distillation	286	T55	AASHTO
39	Total specific weight of pavement by paraffin	120	D1188	ASTM
40	Total specific weight of pavement by paraffin	120	T275	AASHTO

41	Total specific weight of pavement by saturated surface drying (SSD)	95	D2726	ASTM
42	Total specific weight of pavement by saturated surface drying (SSD)	95	T166	AASHTO
43	Pavement compression level	130	DMA-SOP	ASTM
44	Pavement compression level	130	T230	AASHTO
45	Pavement density or pavement layer height	60	D3549	ASTM
46	Pavement density or pavement layer height	26	DMA-SOP	AASHTO
47	Total binder of specimen by Reflex method	260	T164	AASHTO
48	Content of specimen binder by centrifuge	228	D2172	ASTM
49	Content of specimen binder by centrifuge	228	T164	AASHTO
50	Content of specimen binder by combustion	290	D6307	ASTM
51	Binder of specimen by Reflex method	260	D2172	ASTM
52	Humidity content of specimen in the mixture	299	D1461	ASTM
53	Total humidity content of specimen in the mixture	299	T110	AASHTO
54	Preparation of specimen for Marshall testing	78	D1559	ASTM
55	Preparation of specimen for Marshall testing	78	T245	AASHTO
56	Sieve analysis of aggregate specimen after the binder is extracted	200	D5444	ASTM
57	Sieve analysis of aggregate specimen after the binder is extracted	200	T164	AASHTO
58	Sieve analysis of aggregate specimen after the binder is extracted through combustion method	200	D5444	ASTM
59	Total theoretical maximum of specific weight and density of specimen (rice density method)	150	D2041	ASTM
60	Total theoretical maximum of specific weight and density of specimen (rice density method)	150	T209	AASHTO
61	Design of laboratory mixture for work mixture (Marshall method)	3250	AAIMS-4	AASHTO
62	Design of laboratory mixture for work mixture (Marshall method)	3250	AAIMS-4	ASTM
63	Total specific weight and density – Marshall Specimen saturated surface drying	95	D2726	ASTM
64	Total specific weight and density – Marshall Specimen saturated surface drying	95	T166	AASHTO
65	Total specific weight and density – wax method of Marshall specimen	120	D1188	ASTM
66	Total specific weight and density – wax method of Marshall specimen	120	T275	AASHTO
67	Ratio of air-space Marshall specimen	120	D3203	ASTM
68	Ratio of air-space Marshall specimen	120	T269	AASHTO
69	Stability and flow in specific variables - Marshall specimen	380	D1559/D5581- 07a	ASTM
70	Stability and flow in specific variables - Marshall specimen	380	T245	AASHTO
71	Stability and flow in standard variables - Marshall specimen	380	D1559/D5581- 07a	ASTM
72	Stability and flow in standard variables - Marshall specimen	425	D6926	ASTM
73	Stability and flow in standard variables - Marshall specimen	380	T245	AASHTO
74	Testing friction properties of surface by using British Pendulum test	520	E303-93	ASTM
75	Standard practice for ageing acceleration of asphalt binder by using compression cylinder	195	D6521-13	ASTM
76	Standard practice for ageing acceleration of asphalt binder by using compression cylinder	102	R28 -12	AASHTO
77	Standard practice for preparation of analysis specimen of Bituminous by gyratory compactor (lab mixture)	624	D4013	ASTM
78	Standard properties of asphalt longitudinal joints of bridges	299	D6297 - 13	ASTM
79	Standard testing method to measure the permanent cutting bending and compound cutting factor of cement mixture by using super wave technique	715	D7312	ASTM
80	Standard testing method of indirect tensile strength of Bitumen mixture (Rotation specimen)	273	D6931	ASTM
81	Standard testing method of asphalt viscosity	350	D2170 / D2170 M-10	ASTM

82	Standard testing method of viscosity of transparent and non- transparent liquids and calculation of dynamic viscosity	700	D445 - 12	ASTM
83	Standard testing method of preparing and Testing total specific weight of cool asphalt mixture that is classified by density by super wave by gyratory compactor	168	D7229	ASTM
84	Standard testing method of preparing and Testing the relative density of hot asphalt mixture by gyratory compactor	168	D6925 - 09	ASTM
85	Standard testing method of asphalt viscosity by Capillary Tube Viscometers	105	D2171/ d2171M-10	ASTM
86	Standard testing method of quantitative extraction of Bitumen from Bituminous pavement mixture	228	D2171/ d2171M-11	ASTM
87	Testing of pavement deviation measurement	250	T256-01	AASHTO
88	The higher theoretical maximum of specific weight and Bituminous pavement mixture density	130	T209	AASHTO
89	Content of volatile organic compositions by chromatography method – Mass spectrometry (External test)	600	SW 846/8260 B	EPA
90	Bituminous layer dimensions: Width, height or length and density of scroll	72	MOAT - 30/31	UEAtc
91	Testing Bituminous layer stretching to the limit of tear horizontally and vertically of waterproof layer	260	MOAT - 30/31	UEAtc
92	Thermal resistance of waterproof Bituminous layer at 100 Celsius for two hours	98	MOAT - 30/31	UEAtc
93	Strength of joints horizontally and vertically of waterproof Bituminous layer	520	MOAT - 30/31	UEAtc
94	Low temperature flexibility of waterproof Bituminous layer	260	MOAT - 30/31	UEAtc
95	Mass of the waterproof Bituminous layer space unit	111	MOAT - 30/31	UEAtc
96	Softening point of waterproof Bituminous layer	9445	Para G	UEAtc
97	Tensile strength horizontally and vertically at the breaking limit of the waterproof Bituminous layer	455	MOAT - 30/31	UEAtc
98	The waterproof Bituminous layer resistance under 0.6 bar pressure for 24 hours	130	MOAT - 30/31	UEAtc
99	Testing reinforcement of the waterproof Bituminous layer of space unit	260	Para G	UEAtc
100	Quality of reinforcement of the waterproof Bituminous layer and weight of each space unit	221	MOAT - 30/31	UEAtc
101	Standard method for resistance of distortion and cohesion in Bituminous mixtures by High-resolution transmission electron microscopy (HRTEM) techniques	78	T246-10	AASHTO

Cement/Concrete				
102	Concrete compressive force (after heating and ventilation)	65	4165	DIN
103	Concrete density (after heating and ventilation)	85	4165	DIN
104	Concrete dimensions (after heating and ventilation)	26	4165	DIN
105	concrete humidity ratio (after heating and ventilation)	39	4165	DIN
106	Concrete thermal conductivity by hot rod testing method (after heating and ventilation)	390	DMA-SOP	Non – Std
107	Compressive force of building blocks composed of calcium silicate	52	187	BS
108	Portland cement: Chloride content	164	679:2009	ISO
109	Portland cement: Chloride content	597	EN 196-21	BS
110	Portland cement: Insoluble sediments	597	C114	ASTM
111	Portland cement: Insoluble sediments	597	T105	AASHTO
112	Portland cement: Loss of material after combustion	599	C114	ASTM
113	Portland cement: Loss of material after combustion	599	T105	AASHTO
114	Cement: Methods specified for mechanic mixing of hydraulic cement and mortar with elastic properties	52.5	C183 -13	ASTM
115	Methods specified for sampling and taking quantities to test hydraulic cement	35	T127-11	AASHTO
116	Methods specified for sampling and taking quantities to test hydraulic cement	35	C183 -13	ASTM
117	Methods specified for testing hydraulic cement compressive force by using cubic specimens (2 inches or 50 millimeter)	200	C109 / C109 M-12	ASTM

118	Cement: Methods specified for testing bending of hydraulic cement strength	72	C348-08	ASTM
119	Cement: Methods specified for testing newly mixed hydraulic cement flow	121.31	C1362-09	ASTM
120	Cement: Methods specified for testing hydrate temperature of hydraulic cement	900	C186-05	ASTM
121	Cement: Methods specified for testing hydraulic cement relaxation	26	C143M - 12	ASTM
122	Cement: Methods specified for testing hydraulic cement fineness by using Air Permeability Apparatus	110	C204 -11	ASTM
123	Cement: Methods specified for testing hydraulic cement control duration by using Vicat Needle Apparatus	180	C 191 -08	ASTM
124	Cement: Methods specified for testing hydraulic cement density in conformity to ASTMC188	210	C 188	ASTM
125	Cement: Water ratio and cement	382	1881:Pt - 124	BS EN
126	Cement: Ratio of air content in Portland cement mortar (gravity weight method)	182	C 185	ASTM
127	Cement: Determination of Portland cement flow symmetry	111	C 230	ASTM
128	Cement: Contraction of dryness by using standard columns of Portland cement mortar ASTM C778	449	C 569	ASTM
129	Cement: Portland cement fineness of the surface space by air permeability method	110	196: Pt - 6	BS EN
130	Cement: Portland cement fineness of the surface space by air permeability method	110	4359: Pt -2	BS
131	Cement: Portland cement fineness of the surface space by air permeability method	110	C 204	ASTM
132	Cement: Testing water saturation temperature after 7 and 28 days by using calorimeter	900	4550:Pt – 3.8	BS
133	Cement: Testing water saturation temperature after 7 and 28 days by using calorimeter	900	C 186	ASTM
134	Cement: Determination of start and end control duration by using Vicat Needle Apparatus	180	4550:Pt -3.6	BS
135	Cement: Determination of start and end control duration by using Vicat Needle Apparatus	180	C 191	ASTM
136	Cement: Determination of start and end control duration by using Gillmore needle	150	C 266	ASTM
137	Cement: Testing normal symmetry of Portland cement by using Vicat Needle Apparatus	33	C 187	ASTM
138	Cement: Testing cement durability by extension in autoclave	110	C 151/490	ASTM
139	Cement: Testing cement durability in Lechtaler cylinder	72	4550:Pt -3.7	BS
140	Cement: Specific weight of Portland cement by using Dilatometric liquid	85	4550:Pt -3.2	BS
141	Cement: Specific weight of Portland cement by using Dilatometric liquid	111	C 188	ASTM
142	Cement: Testing standard symmetry of Portland cement by Vicat Needle Apparatus	33	4550:Pt -3.5	BS
143	Cement: Portland cement durability by standard concrete cubes	449	4550:Pt -3.4	BS
144	Cement: Portland cement durability by standard mortar cubes	358	4550:Pt -3.4	BS
145	Cement: Portland cement durability by standard mortar cubes	358	C 109	ASTM
146	Concrete: Cement quantity in the hardened concrete	1040	C 1084	ASTM
147	Concrete: Cement quantity in the hardened concrete	1040	T 178	AASHTO
148	Concrete: Chloride quantity in the hardened concrete	40	1881:Pt - 124	BS
149	Concrete: Crane depth in the hardened concrete	59	IP 981	BRE
150	Concrete: Nitrate quantity in the hardened concrete	234	Spectrometry	WRG 809
151	Concrete: Amount of sodium/Potassium/Oxide in the hardened concrete	380	1881:Pt - 124	BS
152	Concrete: Type of cement in the hardened concrete	1300	1881:Pt - 6	BS
153	Concrete: Absorption of any size or shape of specimens after immersion and boiling	120	C 642	ASTM
154	Concrete: Absorption of any size or shape of specimens after immersion and boiling	160	C 642	ASTM
155	Concrete: Bulk density of any size or shape of specimens	120	C 642	ASTM

156	Concrete: Quantitative density of any size or shape of specimens after immersion and boiling	120	C 642	ASTM
157	Concrete: Quantitative density of any size or shape of specimens after immersion and boiling	160	C 642	ASTM
158	Concrete: Quantitative density of any size or shape of specimens after drying in the oven	120	C 642	ASTM
159	Concrete: Quantitative density of any size or shape of specimens after drying in the oven	39	1881:Pt - 114	BS
160	Concrete: Extraction of specimen of 75 millimeter in diameter	182	1881:Pt - 120	BS
161	Concrete: Preparation of specimen of any size or shape with a higher cost of large sizes.	150	C 642	ASTM
162	Concrete: Determination of permeable airspace of any size or shape of specimens	80	C 642	ASTM
163	Concrete: Determination of the concrete capability of absorbing water of any size or shape of specimens	140	1881:Pt - 122	BS
164	Concrete: Determination of compressive force by using broken pieces of concrete beams	45	1881:Pt - 119	BS
165	Concrete: Determination of compressive force by using broken pieces of concrete beams	45	C 116	ASTM
166	Concrete: Determination of compressive force by using broken pieces of concrete beams	45	T 140	AASHTO
167	Concrete: Determination of bending strength by load at the middle point	75	C 239	ASTM
168	Concrete: Determination of bending strength by load at the middle point	75	T 177	AASHTO
169	Concrete: Determination of bending strength by load at the triple point	75	C 78	ASTM
170	Concrete: Determination of bending strength by load at the triple point	75	T 097	AASHTO
171	Concrete: Determination of bending strength of concrete beam	75	1881:Pt - 118	BS
172	Concrete: Determination of compressive force of the covered concrete core	98	1881:Pt - 120	BS
173	Concrete: Determination of compressive force of the covered concrete core	125	C 39/C 42	ASTM
174	Concrete: Determination of compressive force of the covered concrete core	125	T 22	AASHTO
175	Concrete: Extraction of concrete core by 100 millimeters from the specimens delivered to the lab	221	1881:Pt - 120	BS
176	Concrete: Extraction of concrete core by 100 millimeters from the specimens delivered to the lab	221	C42	ASTM
177	Concrete: Extraction of concrete core by 100 millimeters from the specimens delivered to the lab	299	T24	AASHTO
178	Concrete: Extraction of concrete core by 150 millimeters from the specimens delivered to the lab	299	1881:Pt - 120	BS
179	Concrete: Extraction of concrete core by 150 millimeters from the specimens delivered to the lab	150	C42	ASTM
180	Concrete: Extraction of concrete core by 50 millimeters from the specimens delivered to the lab	150	1881:Pt - 120	BS
181	Concrete: Extraction of concrete core by 50 millimeters from the specimens delivered to the lab	150	C42	ASTM
182	Concrete: Extraction of concrete core by 50 millimeters from the specimens delivered to the lab	150	T24	AASHTO
183	Concrete: Extraction of concrete core by 75 millimeters from the specimens delivered to the lab	182	C42	ASTM
184	Concrete: Extraction of concrete core by 75 millimeters from the specimens delivered to the lab	182	Pt-120	BS
185	Concrete: Extraction of concrete core by 75 millimeters from the specimens delivered to the lab	182	T24	AASHTO
186	Concrete: Extraction of concrete core from the field specimens	650	1881:Pt - 120	BS
187	Concrete: Extraction of concrete core from the field specimens	650	C42	ASTM
188	Concrete: Extraction of concrete core from the field specimens	650	T24	AASHTO
189	Concrete: Testing concrete core length/height	20	C0174	ASTM
190	Concrete: Testing concrete core length/height	20	DMA - SOP	AASHTO
191	Concrete: Fast test of chloride permeability	320	C1202	ASTM

192	Concrete: Fast test of chloride permeability	320	T277	AASHTO
193	Concrete: Testing tensile strength of the cracked concrete core	75	C0496	ASTO
194	Concrete: Testing tensile strength of the cracked concrete core	75	T198	AASHTO
195	Concrete: Determination of stable flexibility in the concrete core pressure	1500	C0469	ASTM
196	Concrete: Trimming and closing in Sulphite of the concrete core	72	C42/617	ASTM
197	Concrete: Trimming and closing in Sulphite of the concrete core	72	1881:Pt - 120	BS
198	Concrete: Trimming and closing in Sulphite of the concrete core	72	T24	AASHTO
199	Concrete: Testing the concrete core's absorption of water	140	1881:Pt - 122	BS
200	Concrete: Testing compressive force of the concrete cubes	24	1048	DIN
201	Concrete: Testing compressive force of the concrete cubes	24	4012	ISO
202	Concrete: Testing compressive force of the concrete cubes	24	1881:Pt - 116	BS
203	Concrete: Testing compressive force of the concrete cubes	24	C116	ASTM
204	Concrete: Testing compressive force of the concrete cubes	24	T140	AASHTO
205	Concrete: Testing compressive force of the concrete cubes	200	1881:Pt - 202	BS
206	Concrete: Testing density of the concrete cubes (as delivered to the lab)	13	4012	ISO
207	Concrete: Testing density of the concrete cubes (as delivered to the lab)	13	1881:Pt - 114	BS
208	Concrete: Testing density of the concrete cubes after oven drying	13	1881:Pt - 114	BS
209	Concrete: Testing density of the concrete cubes after oven drying or after saturated surface drying	39	4012	ISO
210	Concrete: Testing density of the concrete cubes after oven drying or after saturated surface drying	39	1881:Pt - 114	BS
211	Concrete: Depth of water penetration into the concrete cube	145	12390 Pt-8	BS EN
212	Concrete: Preliminary absorption of concrete cube surface	90	1881:Pt -	BS
213	Concrete: Testing specific density, spaces and concrete cubic absorption of water	150	C642	ASTM
214	Concrete: Testing pressure flexibility of concrete cubes	150	6784	ISO
215	Concrete: Testing cracked tensile strength	72	4108	ISO
216	Concrete: Testing cracked tensile strength of concrete cubes	72	1881:Pt - 117	BS
217	Concrete: Testing water absorbability of concrete cubes for 30 minutes	299	1881:Pt - 122	BS
218	Concrete: Testing water permeability of concrete cubes for 30 minutes	70	1048	DIN
219	Concrete: Covering concrete cylinder with Sulphite	39	1881:Pt - 120	BS
220	Concrete: Covering concrete cylinder with Sulphite	39	C39/873	ASTM
221	Concrete: Covering concrete cylinder with Sulphite	39	T24	AASHTO
222	Concrete: Concrete cylinder compressive force without covering the sides/edges	30	1881:Pt - 120	BS
223	Concrete: Concrete cylinder compressive force without covering the sides/edges	30	C39/873	ASTM
224	Concrete: Concrete cylinder compressive force without covering the sides/edges	30	T22	AASHTO
225	Concrete: Cracked tensile strength of concrete cylinder	72	1881:Pt - 117	BS
226	Concrete: Cracked tensile strength of concrete cylinder	75	C496	ASTM
227	Concrete: Cracked tensile strength of concrete cylinder	75	T198	AASHTO
228	Concrete: Testing flexibility stability in the concrete cylinder compression	1500	1881:Pt - 121	BS
229	Concrete: Testing flexibility stability in the concrete cylinder compression	1500	C496	ASTM
230	Concrete: Accelerating fresh concrete cylinder handling process to test compressive force	26	C0684	ASTM
231	Concrete: Fresh air content by compression method	120	T152	AASHTO
232	Concrete: Fresh air content by volume method	120	C0173	ASTM
233	Concrete: Quantity of fresh concrete bleeding by decantation method	150	T158	AASHTO

234	Concrete: Determination of frequency duration of fresh concrete	111	1881:Pt - 104	BS
235	Concrete: Determination of air content	120	1881:Pt - 106	BS
236	Concrete: Determination of air content by compression method	120	C0231	ASTM
237	Concrete: Quantity of fresh concrete bleeding by decantation method	200	C0232	ASTM
238	Concrete: Determination of compressed density	50	1881:Pt - 107	BS
239	Concrete: Determination of compression factor	72	1881:Pt - 103	BS
240	Concrete: Determination of flow	72	1881:Pt - 105	BS
241	Concrete: Determination of slump	26	1881:Pt - 102	BS
242	Concrete: Determination of slump	26	C0143	ASTM
243	Concrete: Determination of slump	26	T119	AASHTO
244	Concrete: Determination of temperature	20	1881:Pt - 101	BS
245	Concrete: Determination of temperature	20	C1064	ASTM
246	Concrete: Determination of water content	449	C1079	ASTM
247	Concrete: Determination of workability through penetration of the ball	72	C0360	ASTM
248	Concrete: Preparation and treatment of the column for curvature resistance	110	1881:Pt - 109	BS
249	Concrete: Preparation and treatment of the cube for compressive force	110	1881:Pt - 108	BS
250	Concrete: Preparation and treatment of the cylinder for splitting strength or stiffness	110	1881:Pt - 110	BS
251	Concrete: Preparation and treatment of the column for flexible strength or force	110	C0192	ASTM
252	Concrete: Preparation and treatment of the column for flexible strength or force	110	T023	AASHTO
253	Concrete: Preparation and treatment of the cylinder for splitting strength or stiffness	110	C0192	ASTM
254	Concrete: Preparation and treatment of the cylinder for the compressive force	110	T023	AASHTO
255	Concrete: Preparation of the concrete mix in 50 liters or part of that for lab testing and preparation of the specimen	72	1881:Pt - 125	BS
256	Concrete: Preparation of the concrete mix in 50 liters or part of that for lab testing and preparation of the specimen	72	C0192	ASTM
257	Concrete: Preparation of the concrete mix in 50 liters or part of that for lab testing and preparation of the specimen	72	T126	AASHTO
258	Concrete: Time setting through penetration resistance	60	C0403	ASTM
259	Concrete: Time setting through penetration resistance	60	T197	AASHTO
260	Concrete: Unit weight, volume and air content by testing gravity	150	C0138	ASTM
261	Concrete: Unit weight, volume and air content by testing gravity	150	T121	AASHTO
262	Concrete: Surveying of concrete layer measurement magnetic (cover meter)	650	1881:Pt - 204	BS
263	Concrete: Surveying of concrete layer measurement magnetic (cover meter)	650	DMA-SOP	ASTM
264	Concrete: Potential of half-cell of unpolished reinforcement bar steel	650	1881	BS
265	Concrete: Potential of half-cell of unpolished reinforcement bar steel	650	C876	ASTM
266	Concrete: Initial surface absorption of concrete	70	1881:Pt - 208	BS
267	Concrete: Ultrasonic pulse velocity (UPV) by using Bandit device	650	1881:Pt - 203	BS
268	Concrete: Ultrasonic pulse velocity (UPV) by using Bandit device	650	C597	ASTM
269	Concrete: Non-destructive testing of concrete to test stable load on structures	650	8110	BS
270	Concrete: Non-destructive testing of concrete to test stable load on structures	650	DMA-SOP	ASTM
271	Concrete: Testing of surface rigidity by Schmidt Hammer	650	1881:Pt - 202	BS
272	Concrete: Testing of surface rigidity/hardness by Schmidt Hammer	650	C805	ASTM
273	Concrete: Design of the concrete in compliance with variables of the required mix as provided in the project specifications	1495	1881:Pt - 3	BS

274	Concrete: Design of the concrete in compliance with variables of the required mix as provided in the project specifications	1495	DMA-SOP	ACI
275	Concrete: Design of the concrete in compliance with variables of the required mix as provided in the project specifications	1495	DMA-SOP	TRRL
276	Concrete density of flooring tile	46	1197/ 7263	BS
277	Concrete: Length and width of flooring tile concrete	33	1197/ 7263	BS
278	Concrete: Mass of flooring tile concrete as provided	20	1197/ 7263	BS
279	Concrete: Surface equality to flooring tile concrete	59	1197/ 7263	BS
280	Concrete: Thickness of flooring tile concrete	26	1197/ 7263	BS
281	Concrete: Horizontal strength of flooring tile concrete	176	1197/ 7263	BS
282	Concrete: Water absorption of flooring tile concrete	150	1197/ 7263	BS
283	Concrete: Binding strength of glass-reinforced concrete	111	1170-4	BS
234	Concrete: Compressive force of glass-reinforced concrete	20	1881 - 116	BS
285	Concrete: Dry density of glass-reinforced concrete	26	1170-6	BS
286	Concrete: Factor of flexibility stability in the compression of the glass-reinforced concrete	150	1881:Pt - 121	BS
287	Concrete: Tensile strength of glass-reinforced concrete	85	2782 -10/1003	BS
288	Concrete: Water absorption of glass-reinforced concrete for 24 hours	39	1170-6	BS
289	Concrete: Water absorption of glass-reinforced concrete for 7 days	52	1170-6	BS
290	Concrete: Preparation of the lab mixture as specified	390	AAIMS - 4	AASHTO
291	Concrete: Preparation of the lab mixture as specified	390	AAIMS - 4	ASTM
292	Insulated concrete with light color – amount of humidity upon delivery	33	C495/C513	ASTM
293	Concrete: Thermal conductivity coefficient of the insulated concrete with light color	390	C495/C513	ASTM
294	Concrete: The compressive force of the insulated concrete with light color	39	C495/C513	ASTM
295	Concrete: Weight unit of drying in the oven for the insulated concrete with light color	65	C495/C513	ASTM
296	Building block: Hollow block slabs – Determination of compressive force	59	6073:Pt - 1	BS
297	Building block: Hollow block slabs – Determination of compressive force	59	C140	ASTM
298	Building block: Hollow block slabs – Determination of humidity content	150	C140	ASTM
299	Building block: Hollow block slabs – Determination of water absorption	130	C140	ASTM
300	force	59	6073:Pt - 1	BS
301	Building block: Hollow block slabs – Determination of compressive force	59	C140	ASTM
302	Building block: Hollow block slabs – Determination of humidity content	150	C140	ASTM
303	Building block: Hollow block slabs – Determination of water absorption	130	C140	ASTM
304	Building block: Compressive force of EPS units/Light perlite as received	176	C513	ASTM
305	Building block: Compressive force of EPS units/Light perlite after oven drying	221	C513	ASTM
306	Building block: Decrease of EPS/ Light perlite dryness after 28 days from date of making the mold.	299	C426	ASTM
307	Building block: Decrease of EPS/ Light perlite dryness after 3 days from date of making the mold.	299	C426	ASTM
308	Building block: Decrease of dryness of EPS/ Light perlite after 7 days from date of making the mold	299	C426	ASTM
309	Building block: Infilled tile – Determination of the compressive force	59	6073:Pt - 1	BS
310	Building block: Infilled tile – Determination of the compressive force	59	C140	ASTM
311	Building block: Infilled tile – Determination of the humidity content	150	C140	ASTM
312	Building block: Infilled tile – Determination of the water absorption	130	C140	ASTM

313	Mortar/Slab: Pure air content by gravimetric method	85	4551	BS
314	Mortar/Slab: Stability by dropping the ball method	26	4551	BS
315	Mortar/Slab: Preparation and processing of cube to the compression force	72	4551	BS
316	Mortar/Slab: Preparation and processing of the slab to curvature resistance	72	4551	BS
317	Mortar/Slab: Mixing of the fresh mortar (1 liter) for lab test and specimen preparation purposes	39	4551	BS
318	Mortar/Slab: Water retention and stable retention	150	4551	BS
319	Mosaic cohesion of concrete adhesion/ pryout strength of each specimen	425	D4541	ASTM
320	Mosaic cohesion of testing concrete ageing test (for each slab)	455	D1183	ASTM
321	Paving: Precast flagstone /wire coating density	46	7263:Pt - 1	BS
322	Paving: Precast flagstone /wire coating dimensions of the whole unit	40	7263:Pt - 1	BS
323	Paving: Precast flagstone /wire coating dimensions of the whole unit	40	7263:Pt - 1	BS
324	Paving: Precast flagstone /horizontal strength of the wire coating	176	7263:Pt - 1	BS
325	Paving: Precast flagstone /Water absorption of wire coating	200	7263:Pt - 1	BS
326	Paving: Precast concrete pavement/Edges compression force	371	7263:Pt - 1	BS
327	Paving: Precast concrete pavement/Edges density	46	7263:Pt - 1	BS
328	Paving: Precast pavement/Dimensions of edges of the whole unit	60	7263:Pt - 1	BS
329	Paving: Precast pavement/Mass of edges of the whole unit	40	7263:Pt - 1	BS
330	Paving: Precast pavement/Horizontal force of the edges	255	7263:Pt - 1	BS
331	Paving: Precast pavement/Water absorption of the edges	200	7263:Pt - 1	BS
332	Paving: Precast concrete/block water absorption	98	C140/C936	ASTM
333	Paving: Precast concrete/Total block density	33	C140/C936	ASTM
334	Paving: Precast concrete/Block corrosion loss coefficient	150	C140/C936	ASTM
335	Paving: Precast concrete/Block compression force	39	6717:Pt - 1	BS
336	Paving: Precast concrete/Block compression force	39	C140/C936	ASTM
337	Paving: Precast concrete/Block measurements (length/width and thickness)	26	C140/C936	ASTM
338	Paving: Precast concrete/Block measurements (length/width and thickness)	390	C823/C823M - 12	ASTM
339	Standard practice for testing and taking of specimens from the hardened concrete at construction	262.5	C31/C823M - 12	ASTM
340	Standard practice for making and testing of lab treated concrete specimens	72	C192/C192M - 13	ASTM
341	Standard practice for concrete cast in molds by compression of the cylinder and vibratory hammer	105	C1435/ C1435M - 08	ASTM
342	Standard test method of air content in the fresh concrete by compression method	120	C231/C231M - 10	ASTM
343	Standard test method of compression force of cylinder concrete specimens	30	C39/C39M -12a	ASTM
344	Standard test method for testing and analyzing hardened mortar	2600	C1324 -10	ASTM
345	Standard method of getting the concrete core and spread concrete breakers	299	C42 /C42M - 13	ASTM
346	Standard method of gypsum, gypsum plasters and gypsum concrete physical test	105	C472 - 99	ASTM
347	Cement test methods – cement chemical analysis	600	196 - 2	CSN/EN
348	Cement test methods – Pozzolana analysis of Pozzolanic cement	650	196 - 5	DIN/EN
349	Cement: Full analysis of Portland cement	6500	C114	ASTM
350	Cement: Full analysis of Portland cement	1950	Spectrometry	-
351	Cement: Full analysis of Portland cement	6500	T105	AASHTO
352	Cement: Analysis of Sulphite content in Portland cement	597	C114	ASTM
353	Cement: Analysis of Sulphite content in Portland cement	597	T105	AASHTO
354	Cement: Standard methods for the chemical test of hydraulic cement	600	C114 - 11be1	ASTM

355	Concrete: Complete test of the hardened concrete	2340	Spectrometry	-
356	Concrete: Sulfate content in hardened concrete test	40	1881: Pt - 124	BS
357	Standard testing method for chemical analysis of the limestone, lime and calcium hydroxide	350	C25 - 11	ASTM
358	Standard testing method for of the dissolved solids content and suspension solids content in water test item 10 and 12	55	D5907 - 10	ASTM
359	Testing sulfur ions in water	40	D516 - 11	ASTM
360	Chloride content in water	40	D512 - 12	ASTM
361	Standard practice for testing of the hardened concrete by using the electronic microscope	1300	C1723 - 10	ASTM
362	Standard practice for rock testing of the hardened concrete	2785	C856 - 11	ASTM

Ground Tissue/Membrane					
363	Ground Tissue: load at break limit – cut piece (main direction and intersections)	455	D1682	ASTM	
364	Ground Tissue: load at break limit – removal method (main direction and intersections)	455	D1682	ASTM	
365	Ground Tissue: load at break limit – modified removal method (main direction and intersections)	455	D1682	ASTM	
366	Ground Tissue: load at break limit – cracked pieces (main direction and intersections)	455	D1682	ASTM	
367	Ground Tissue: Resistance of perforation according to California bearing ratio (CBR) test	1125	6906 P - 4	BS	
368	Ground Tissue: Elongation – cut piece (main direction and intersections)	260	D1682	ASTM	
369	Ground Tissue: Elongation – removal method (main direction and intersections)	260	D1682	ASTM	
370	Ground Tissue: Elongation – modified removal method (main direction and intersections)	260	D1682	ASTM	
371	Ground Tissue: Elongation – Cracked pieces (main direction and intersections)	315	D1682	ASTM	
372	Ground Tissue: Weight of area measuring unit	228	D3776	ASTM	
373	Testing of penetration capacity of waterproof Bitumen strip	182	Para M	UEAtc	
374	Testing of capability of penetration into waterproof Bitumen packaging strip	9445	D5	ASTM	
375	Testing of capability of penetration into waterproof Bitumen packaging strip	425	D36/D1004	ASTM	
376	Testing of capacity of sticking and removal of waterproof membrane though spray method	425	D4541	ASTM	
377	Testing of capacity of waterproof membrane durability by spraying salt	455	B117	ASTM	
378	Testing of waterproof membrane density through spraying method	150	D792/6111	ASTM	
379	Testing of tearing resistance to waterproof membranes through spraying method	945	D624	ASTM	
380	Testing of the waterproof membranes thickness through spraying method	72	MOAT - 30/31	UEAtc	
381	Testing of waterproof plastic strips density	85	D1593	ASTM	
382	Testing of enforceability of waterproof plastic strips (average testing of both directions)	1350	D882	ASTM	
383	Testing of enforceability of waterproof plastic strips (average testing towards the machine)	1350	D882	ASTM	
384	Testing of enforceability of waterproof plastic strips (average testing towards the intersections)	1350	D882	ASTM	

Industrial / Materials Tests					
385	(Home) bathrooms that are resistant to hydraulic acid	247	4305/198	BS/EN	
386	(Home) bathrooms that are resistant to hydrogen peroxide	247	4305/198	BS/EN	
387	(Home) bathrooms that are resistant to Methylene blue	247	4305/198	BS/EN	
388	(Home) bathrooms that are resistant to phenol disinfectant	247	4305/198	BS/EN	
389	(Home) bathrooms that are resistant to potassium permanganate	247	4305/198	BS/EN	

390	(Home) bathrooms that are resistant to Sodium carbonate decahydrate	247	4305/198	BS/EN
391	(Home) bathrooms that are resistant to Sodium chloride	247	4305/198	BS/EN
392	(Home) bathrooms that are resistant to Sodium hydroxide	247	4305/198	BS/EN
393	Analyzing cement components through X-ray fluorescence (XRF)	247	4305/198	BS
394	Toughened glass pipes: combustion loss (water tanks and canopies)	364	ISO 29581 - 2	BS
395	Toughened glass pipes: combustion loss (sewerage pipes)	208	2782 : Pt - 10/1002	BS
396	Uncoated ceramic tile that is resistant to home chemicals – standard cleaning agent	208	2782 : Pt - 10/1002	BS
397	Uncoated ceramic tile that is resistant to home chemicals – Ammonium chloride	585	6431: Pt -18	BS
398	Uncoated ceramic tile that is resistant to Lactic acid	585	6431: Pt -18	BS
399	Uncoated ceramic tile that is resistant to Potassium hydroxide	585	6431: Pt -18	BS
400	Uncoated ceramic tile that is resistant to sulfuric acid	585	6431: Pt -18	BS
401	Uncoated ceramic tile that is resistant to Sodium hypochlorite and swimming pools salts	585	6431: Pt -18	BS
402	Uncoated ceramic tile that is resistant to Copper sulfate and swimming pools salts	585	6431: Pt -18	BS
403	Coated ceramic tile that is resistant to home chemicals – standard cleaning agent	585	6431: Pt -18	BS
404	Coated ceramic tile that is resistant to home chemicals – Ammonium chloride	228	6431: Pt -19	BS
405	Uncoated ceramic tile that is resistant to hydrochloric acid	117	6431: Pt -19	BS
406	Coated ceramic tile that is resistant to Potassium hydroxide	228	6431: Pt -19	BS
407	Coated ceramic tile that is resistant to Sodium hypochlorite and swimming pools salts	228	6431: Pt -19	BS
408	Coated ceramic tile that is resistant to Copper sulphate and swimming pools salts	117	6431: Pt -19	BS
409	Coated ceramic tile that is resistant to stains by using Methyl blue	117	6431: Pt -19	BS
410	Coated ceramic tile that is resistant to stains by using Potassium permanganate	117	6431: Pt -19	BS
411	Ammonia content in water	117	Spectrometry	-
412	Anionic content of detergents	117	Spectrometry	-
413	Content of Arsenic in water	520	Spectrometry	-
414	Content of Calcium in water	117	Analytical	-
415	Content of Chloride in water	40	D512	ASTM
416	Content of free Chlorine in water	117	Spectrometry	-
417	Content of whole Chlorine in water	40	Analytical	-
418	Full analysis of elements in water	780	Spectrometry	-
419	Electric conductivity in water	59	2690 : Pt -9	BS
420	Electric conductivity in water	59	D1125	ASTM
421	Hydrogen value in water	50	1377 : Pt -3	BS
422	Hydrogen value in water	50	D1293	ASTM
423	Hydrogen value in water	50	T26	AASHTO
424	Total solids suspending in water	80	Analytical	-
425	Total alkaline value in water	163	Analytical	-
426	Total solids soluble in water	81	, 1377 : Pt -3	BS
427	Total hardness in water	163	D1126	ASTM
428	Total insoluble and organic components in water	163	T26	AASHTO
100	Aluminum: Value of hardness by using Barcol measure of ductile		2782 : Pt	DC
429	models	236	-10/1001	82
430	Aluminum: Weight value per vertical meter of the ductile models	72	487: Pt - 2	BS
431	Aluminum: Value of total dimensions of the ductile models	26	487: Pt - 2	BS
432	Aluminum: Value of hardness by using Rockwell measure of the ductile models	150	DMA-SOP	BS

433	Aluminum: Measuring of packaging thickness of the ductile models	126	487 : Pt -2	BS
434	Ceiling systems: Measuring of dimensions of panes/metal requirements	33	DMA-SOP	BS
435	Ceiling systems: Measuring of elongation of panes/metal requirements	72	10002 Pt - 1	BS EN
436	Ceiling systems: Measuring of external packaging of panes/metal requirements	39	B499 / D1400	ASTM
437	Ceiling systems: Measuring of internal packaging of panes/metal requirements	39	B499 / D1400	ASTM
438	Ceiling systems: Measuring of panes weight/metal requirements	26	DMA -SOP	BS
439	Ceiling systems: Measuring of panes tensile strength/metal requirements	150	10002 Pt - 1	BS EN
440	Ceiling systems: Measuring of panes yield point/metal requirements	132	10002 Pt - 1	BS EN
441	Cellular plastic: Ostensible testing of the (density/core/total)	104	D1622	ASTM
442	Cellular plastic: Measuring of the pressure coefficient (under the Ratio Test)	221	D1621	ASTM
443	Cellular plastic: Measuring of the compression force by method A	176	D1621	ASTM
444	Cellular plastic: Measuring of the dimension stability by certain temperature and specific time	176	D1204	ASTM
445	Cellular plastic: Testing of elongation of the tear limit by using measure of length (25/50) millimeters	221	D1623	ASTM
446	Cellular plastic: Testing of combustibility properties	150	4735	BS
447	Cellular plastic: Measuring of tensile strength by using specimen B type	267	D1623	ASTM
448	Cellular plastic: Thermal conductivity by thermal flow measure	650	C518	ASTM
449	Cellular plastic: Thermal conductivity by hot wire measure	390	DMA -SOP	Non-Std
450	Cellular plastic: Measuring of thickness except external layers	72	D1622	ASTM
451	Cellular plastic: Measuring of water absorption (volume to volume)	176	C272/ D2842	ASTM
452	Cellular plastic: Measuring of water vapor permeability	267	E-96	ASTM
453	Cellular plastic: Measuring of vapor by certain temperature and specific time	267	E-96	ASTM
454	Cellular plastic through spray method: Mearing of the bulk density	104	D1622	ASTM
455	Cellular plastic through spray method: Mearing of the pressure coefficient	221	D1621	ASTM
456	Cellular plastic through spray: Measuring of the compressive force by (A test method)	176	D1621	ASTM
457	Cellular plastic through spray: Measuring of stability of dimensions by certain temperature and specific time	176	D1204	ASTM
458	Cellular plastic through spray: Measuring of elongation at the tear limit by using measure of length (50/25 millimeters)	221	D1623	ASTM
459	Cellular plastic through spray: Measuring of combustibility properties	150	4735	BS
460	Cellular plastic through spray: Measuring of layers number	20	D1622	ASTM
461	Cellular plastic: Measuring of tensile strength by using specimen B type	267	D1623	ASTM
462	Cellular plastic through spray method: Thermal conductivity by thermal flow measure	650	C518	ASTM
463	Cellular plastic through spray method: Thermal conductivity by hot wire measure	390	DMA-SOP	Non-Std
464	Cellular plastic through spray method: Measuring of thickness	72	D1622	ASTM
465	Cellular plastic: Measuring of water absorption (volume to volume)	176	D2842	ASTM
466	Cellular plastic: Measuring of water vapor permeability	267	96-E	ASTM
467	Cellular plastic: Measuring of vapor by certain temperature and specific time	267	96-E	ASTM
468	Ceramic: Polished tiles – Convexity: Diffraction ratio	72	6431: Pt -10	BS
469	Ceramic: Polished tiles – Convexity edge: length diffraction	72	6431: Pt -10	BS
470	Ceramic: Polished tiles – Convexity edge: width diffraction	72	6431: Pt -10	BS
471	Ceramic: Polished tiles – tile length – diffraction from the center/ work volume	72	6431: Pt -10	BS

472	Ceramic: Polished tiles – Thermal elongation coefficient	299	6431: Pt -15	BS
473	Ceramic: Polished tiles – Base thickness: diffraction from the center/ work volume	72	6431: Pt -10	BS
474	Ceramic: Polished tiles – Mass of the unit area: Diffraction from the center	72	6431: Pt -10	BS
475	Ceramic: Polished tiles – Secondary thickness: Diffraction from the center	72	6431: Pt -10	BS
476	Ceramic: Polished tiles – Section factor	267	6431: Pt -12	BS
477	Ceramic: Polished tiles – Rectangular – length	72	6431: Pt -10	BS
478	Ceramic: Polished tiles – Rectangular – width	72	6431: Pt -10	BS
479	Ceramic: Polished tiles – Tiles' resistance to cracks	234	6431: Pt -17	BS
480	Ceramic: Polished tiles – Tiles' resistance to thermal shock	371	6431: Pt -16	BS
481	Ceramic: Polished tiles –resistance to corrosion by spherical grinding abrasion	455	SOP-xxx	DMA
482	Ceramic: Polished tiles –rigidity of scratch of the tile surface	91	6431: Pt -13	BS
483	Ceramic: Polished tiles – tile edge straightness – length	72	6431: Pt -10	BS
484	Ceramic: Polished tiles – tile edge straightness – width	72	6431: Pt -10	BS
485	Ceramic: Polished tiles – surface quality through optical test	130	6431: Pt -10	BS
486	Ceramic: Polished tiles – Torsion – diversion/diversion ratio	72	6431: Pt -10	BS
487	Ceramic: Polished tiles – Water absorption	208	6431: Pt -11	BS
488	Ceramic: Polished tiles – tile length – diffraction from the center/ work volume	72	6431: Pt -10	BS
489	Ceramic: Polished tiles – Convexity center: Diversion/diffraction ratio	72	6431: Pt -10	BS
490	Ceramic: Polished tiles – Convexity edge: length diffraction	72	6431: Pt -10	BS
491	Ceramic: Polished tiles – Convexity edge: width diffraction	72	6431: Pt -10	BS
492	Ceramic: Polished tiles – Tile's length – Diffraction from the center/ work volume	72	6431: Pt -10	BS
493	Ceramic: Polished tiles – Thermal elongation coefficient	299	6431: Pt -15	BS
494	Ceramic: Polished tiles – Base thickness: diffraction from the center/ work volume	72	6431: Pt -10	BS
495	Ceramic: Polished tiles – Base thickness: Mass of the unit area: Diffraction from the center	72	6431: Pt -10	BS
496	Ceramic: Polished tiles – Base thickness: Secondary thickness: diffraction from the center	72	6431: Pt -10	BS
497	Ceramic: Polished tiles – Section factor	267	6431: Pt -12	BS
498	Ceramic: Polished tiles – Rectangular – length	72	6431: Pt -10	BS
499	Ceramic: Polished tiles – Rectangular – width	72	6431: Pt -10	BS
500	Ceramic: Polished tiles – Tiles' resistance to thermal shock	371	6431: Pt -16	BS
501	Ceramic: Polished tiles –rigidity of scratch of the tile surface	91	6431: Pt -13	BS
502	Ceramic: Polished tiles – tile edge straightness – length	72	6431: Pt -10	BS
503	Ceramic: Polished tiles – tile edge straightness – width	72	6431: Pt -10	BS
504	Ceramic: Polished tiles – surface quality through optical test	130	6431: Pt -10	BS
505	Ceramic: Polished tiles – Torsion – diversion/diversion ratio	72	6431: Pt -10	BS
506	Ceramic: Polished tiles -water absorption	208	6431: Pt -11	BS
507	Ceramic: Polished tiles – width – Diffraction from the center/through work volume	72	6431: Pt -10	BS
508	Clay tiles: Roofing/façade/flooring – dimensions	98	C67	ASTM
509	Clay tiles: Roofing/façade/flooring – mass	65	C67	ASTM
510	Clay tiles: Roofing/façade/flooring – cold water absorption	208	C67	ASTM
511	Clay tiles: Roofing/façade/flooring – boiled water absorption	312	C67	ASTM
512	Crystal glass – lead oxide content	975	Spectrometry	-
513	Elongation joint filler – compressive force at 50% of deformation rate	299	D545	ASTM
514	Elongation joint filler – density	150	D1752	ASTM
515	Elongation joint filler – dimensions	72	D1752	ASTM

516	Elongation joint filler – Unit area mass	85	D1752	ASTM
517	Elongation joint filler – Restoration at 50% of deformation rate and 3 times of load restoration	449	D545	ASTM
518	Elongation joint filler – Restoration at 50% of deformation rate and one time of load restoration	371	D545	ASTM
519	Elongation joint filler – Water absorption	176	D545	ASTM
520	Floorings – Terrazzo tiles – tiles' dimensions	65	4131	BS
521	Floorings – Terrazzo tiles – total water absorption	239	4131	BS
522	Floorings – Terrazzo tiles – Transverse force	477	4131	BS
523	Floorings – Terrazzo tiles – Water absorbed by tile surface	117	4131	BS
524	Glass reinforced plastic (GRP): water tank/canopy/shading roof – GRP panel absorption	111	2782:Pt- 4/430A	BS
525	Glass reinforced plastic (GRP): water tank/canopy/shading roof – measuring of the soft surface rigidity by Barcol test through pressure	236	2782:Pt- 10/1001	BS
526	Glass reinforced plastic (GRP): water tank/canopy/shading roof – elongation – vertical/horizontal	234	2782:Pt- 10/1003	BS
527	Glass reinforced plastic (GRP): water tank/canopy/shading roof – Mass of unit area/GRP panel density	85	2782:Pt-4	BS
528	Glass reinforced plastic (GRP): water tank/canopy/shading roof – panel dimensions	65	2782:Pt-4	BS
529	Glass reinforced plastic (GRP): water tank/canopy/shading roof – panel mass	33	2782:Pt-4	BS
530	Glass reinforced plastic (GRP): water tank/canopy/shading roof – plastic elasticity coefficient – towards horizontal/vertical direction	312	2782:Pt- 10/1003	BS
531	Glass reinforced plastic (GRP): water tank/canopy/shading roof – Section elasticity coefficient - towards horizontal/vertical direction	312	2782:Pt- 10/1003	BS
532	Glass reinforced plastic (GRP): water tank/canopy/shading roof – tensile strength - towards horizontal/vertical direction	429	2782:Pt- 10/1003	BS
533	Glass reinforced plastic (GRP): water tank/canopy/shading roof – GRP panel thickness	72	2782:Pt-4	BS
534	Glass reinforced plastic (GRP): Sewage pipes – Rigidity by measuring of pressure (Barcol)	236	2782:Pt- 10/1001	BS
535	Glass reinforced plastic (GRP): Sewage pipes – Actual length	72	5480:Pt-2	BS
536	Glass reinforced plastic (GRP): Sewage pipes – the initial vertical tensile strength by column test method	221	5480:Pt-2	BS
537	Glass reinforced plastic (GRP): Sewage pipes – the initial vertical tensile strength by sheet test method	299	5480:Pt-2	BS
538	Glass reinforced plastic (GRP): Sewage pipes – the initial vertical tensile strength by film test method	299	5480:Pt-2	BS
539	Glass reinforced plastic (GRP): Sewage pipes – the initial quality strength	299	5480:Pt-2	BS
540	Glass reinforced plastic (GRP): Sewage pipes – inner diameter	72	5480:Pt-2	BS
541	Glass reinforced plastic (GRP): Sewage pipes – Quadrangle loss	85	5480:Pt-2	BS
542	Glass reinforced plastic (GRP): Sewage pipes – Pipe straightness	150	5480:Pt-2	BS
543	Glass reinforced plastic (GRP): Sewage pipes – Resistance to stress corrosion	1118	5480:Pt-2	BS
544	Glass reinforced plastic (GRP): Sewage pipes – Pipe wall thickness	85	5480:Pt-2	BS
545	Glass reinforced plastic (GRP): Sewage pipes – Water absorption	111	2782:Pt- 4/430A	BS
546	Gypsum board – Tiles/ board density	104	1230	BS
547	Gypsum board – Tiles/ board density	104	C473	ASTM
548	Gypsum board – Tiles/ board dimensions	78	1230	BS
549	Gypsum board – Tiles/board dimensions	78	C473	ASTM
550	Gypsum board – Tiles/ board finishing and appearance	98	1230	BS
551	Gypsum board – Tiles/ board finishing and appearance	98	C690	ASTM
552	Gypsum board – Tiles/ bending force (From normal to fibric-Method B	195	1230	BS
553	Gypsum board – Tiles/ bending force (From normal to fibric-Method B	195	C473	ASTM

554	Gypsum board – Tiles/ bending force (From normal to fibric-Method B	195	1230	Bs
555	Gypsum board – Tiles/ bending force (From normal to fibric-Method B	195	C473	ASTM
556	Gypsum board – Tiles/ tilt due to humidity	234	1230	BS
557	Gypsum board – Tiles/ tilt due to humidity	234	C473	ASTM
558	Gypsum board – Tiles/ Board surface resistance to water	117	1230	BS
559	Gypsum board – Tiles/ Board surface resistance to water	117	C473	ASTM
560	Gypsum board – Tiles/ Board surface resistance to water	117	1230	BS
561	Gypsum board – Tiles/ Board surface resistance to water	117	C473	ASTM
562	Light bulb – the main elements of the chandelier through EDS	156	SOP	DMA
563	Light bulb – Preparation of the test specimen of the chandelier	585	SOP	DMA
564	Manhole cover: Grey/Ductile iron – frame and cover dimensions	72	124	BS EN
565	Manhole cover: Grey/Ductile iron – frame and cover dimensions	72	497:Pt - 1	BS
566	Manhole cover: Grey/Ductile iron – load test	522	124	BS EN
567	Manhole cover: Grey/Ductile iron – load test	522	497:Pt - 1	BS
568	Manhole cover: Grey/Ductile iron – frame and cover mass	85	124	BS EN
569	Manhole cover: Grey/Ductile iron – frame and cover mass	85	497:Pt - 1	BS
570	Manhole cover: Grey/Ductile iron – permanent group	522	124	BS EN
571	Manhole cover: Grey/Ductile iron – permanent group	522	497:Pt - 1	BS
572	Pipes: Plastic to supply water – density	111	4991	BS
573	Pipes: Plastic to supply water – density	111	D543	ASTM
574	Pipes: Plastic to supply water – Elasticity coefficient (Secant)	293	4991	BS
575	Pipes: Plastic to supply water – Elasticity coefficient (Secant)	293	D543	ASTM
576	Pipes: Plastic to supply water – elongation (measure of length – 25 millimeters)	215	4991	BS
577	Pipes: Plastic to supply water – elongation (measure of length – 25 millimeters)	215	D543	ASTM
578	Pipes: Plastic to supply water – hardness (measure Shore D)	189	4991	BS
579	Pipes: Plastic to supply water – hardness (measure Shore D)	189	D543	ASTM
580	Pipes: Plastic to supply water – Thermal reflux	299	4991	BS
581	Pipes: Plastic to supply water – Thermal reflux	299	D543	ASTM
582	Pipes: Plastic to supply water – Length unit mass	72	4991	BS
583	Pipes: Plastic to supply water – Length unit mass	72	D543	ASTM
584	Pipes: Plastic to supply water – Roundness loss	85	4991	BS
585	Pipes: Plastic to supply water – Roundness loss	85	D543	ASTM
586	Pipes: Plastic to supply water – Outer diameter	72	4991	BS
587	Pipes: Plastic to supply water – Outer diameter	72	D543	ASTM
588	Pipes: Plastic to supply water – Tensile strength	449	4991	BS
589	Pipes: Plastic to supply water – Tensile strength	449	D543	ASTM
590	Pipes: Plastic to supply water – Wall thickness	72	4991	ASTM
591	Pipes: Plastic to supply water – Wall thickness	72	D543	ASTM
592	Polyester – Textiles – Fabric – Unit area mass	315	D1593	DIN
593	Polyester – Textiles – Fabric – Volume (width x thickness)	91	D5199	EN-ISO
594	Polyester – Textiles – Fabric – section resistance (vertical and horizontal)	945	53363	ASTM
595	Polyester – Textiles – Fabric – Tensile strength (vertical and horizontal)	945	1421	ASTM
596	Uniaxial Compressive Strength (UCS)	156	D3148	BS
597	Rocks – Dimensions – Rock water absorption	91	097	ASTM
598	Rubber: paper / wood/ shape /pressure group	371	903	BS
599	Rubber: paper /wood/ shape /pressure group	371	D395	ASTM

600	Rubber: paper/ wood/ shape /pressure group – configuration at 100 m for 72 hours	39	903	BS
601	Rubber: wood / shape- configuration at 100 m for 72 hours	130	DMA-SOP	ASTM
602	Rubber: paper/ shape- density	150	D792/6111	ASTM
603	Rubber: paper/ shape- density through method A	150	903	BS
604	Rubber: paper/ shape- dimensions	85	903	BS
605	Rubber: paper/ shape- dimensions	85	D3767	ASTM
606	Rubber: paper/ shape- elongation	130	903	BS
607	Rubber: paper/ shape- elongation	1350	D412	ASTM
608	Rubber: paper/ shape– hardness via Durometer Shore A	189	903	BS
609	Rubber: paper/ shape– hardness via Durometer Shore A	189	D2240	ASTM
610	Rubber: paper/ shape– hardness via IRHD	332	903	BS
611	Rubber: paper/ shape– hardness via IRHD	332	D1415	ASTM
612	Rubber: paper/ shape– tensile strength	299	903	BS
613	Rubber: paper/ shape– tensile strength	1350	D412	ASTM
614	Sandwich panel: – flat Insulation density	150	C271	ASTM
615	Sandwich panel: flat – outer panel – unit area mass	176	DMA - SOP	ASTM
616	Sandwich panel: flat – outer panel –percentage of elongation	72	10002: Pt -1	BS
617	Sandwich panel: flat – outer panel –percentage of elongation	72	A-370	ASTM
618	Sandwich panel: flat – outer panel – Tensile strength	150	10002: Pt -1	BS
619	Sandwich panel: flat – outer panel – Tensile strength	150	A-370	ASTM
620	Sandwich panel: flat – outer panel – Thickness without coating	85	DMA - SOP	ASTM
621	Sandwich panel: flat – outer panel – outer coating thickness	126	DMA - SOP	ASTM
622	Sandwich panel: flat – outer panel – inner coating thickness	126	DMA - SOP	ASTM
623	Sandwich panel: flat – outer panel – response strength	132	10002: Pt -1	BS
624	Sandwich panel: flat – outer panel – response strength	132	A-370	ASTM
625	Sandwich panel: flat – outer panel – unit area mass	176	DMA - SOP	ASTM
626	Sandwich panel: flat -inner panel - percentage of elongation	72	10002: Pt -1	BS
627	Sandwich panel: flat –inner panel – percentage of elongation	72	A-370	ASTM
628	Sandwich panel: flat –inner panel – tensile strength	150	10002: Pt -1	BS
629	Sandwich panel: flat –inner panel – tensile strength	150	A-370	ASTM
630	Sandwich panel: flat –inner panel – thickness without coating	126	DMA - SOP	ASTM
631	Sandwich panel: flat –inner panel – outer coating thickness	126	DMA - SOP	ASTM
632	Sandwich panel: flat –inner panel – inner coating thickness	126	DMA - SOP	ASTM
633	Sandwich panel: flat –inner panel – response strength	132	10002: Pt -1	BS
634	Sandwich panel: flat –inner panel – response strength	132	A-370	ASTM
635	Sandwich panel: flat –inner panel – thickness of the panel installed	72	DMA - SOP	ASTM
636	Sandwich panel: flat – outer formed panel – outer thickness of coating	126	DMA - SOP	ASTM
637	Sandwich panel: flat – outer formed panel – inner thickness of coating	126	DMA - SOP	ASTM
638	Sandwich panel: flat – outer formed panel – are unit mass	176	DMA - SOP	ASTM
639	Sandwich panel: flat – outer formed panel – percentage of elongation	72	10002: Pt -1	BS
640	Sandwich panel: flat – outer formed panel – percentage of elongation	72	A-370	ASTM
641	Sandwich panel: flat – outer formed panel – network and depth of formation	85	DMA - SOP	ASTM
642	Sandwich panel: flat – outer formed panel – tensile strength	150	10002: Pt -1	BS
643	Sandwich panel: flat – outer formed panel – tensile strength	150	A-370	ASTM
644	Sandwich panel: flat – outer formed panel – Thickness without coating	126	DMA - SOP	ASTM

645	Sandwich panel: flat – outer formed panel – Thickness of the outer panel at the panel crescent (top) or basin	85	DMA - SOP	ASTM
646	Sandwich panel: flat – outer formed panel – Response strength	132	10002: Pt -1	BS
647	Sandwich panel: flat – outer formed panel – Response strength	132	A-370	ASTM
648	Sandwich panel: flat formed insulator – Apparent total density	150	DMA - SOP	ASTM
649	Sandwich panel: flat – inner formed panel – Thickness of the outer coating	126	DMA - SOP	ASTM
650	Sandwich panel: flat – inner formed panel – Thickness of the inner coating	126	DMA - SOP	ASTM
651	Sandwich panel: flat – inner formed panel – Unit area mass	176	DMA - SOP	ASTM
652	Sandwich panel: flat – inner formed panel – Thickness of elongation	72	10002: Pt -1	BS
653	Sandwich panel: flat – inner formed panel – Thickness of elongation	72	A-370	ASTM
654	Sandwich panel: flat – inner formed panel – Tensile strength	150	10002: Pt -1	BS
655	Sandwich panel: flat – inner formed panel – Tensile strength	150	A-370	ASTM
656	Sandwich panel: flat – inner formed panel – Thickness without coating	126	DMA-SOP	ASTM
657	Sandwich panel: flat – inner formed panel – Response strength	132	10002: Pt -1	BS
658	Sandwich panel: flat – inner formed panel – Response strength	132	A-370	ASTM
659	Seeds testing – humidity content	130	-	ISTA
660	Perforated metal panels – Thickness of the plate coating	126	B499/B244	ASTM
661	Perforated metal panels – Thickness of the plate coating	126	DMA-SOP	BS
662	Perforated metal panels – Plate elongation	85	10002: Pt -1	BS
663	Perforated metal panels – Plate elongation	85	A370/525	ASTM
664	Perforated metal panels – Plate mass/meter	39	DMA-SOP	ASTM
665	Perforated metal panels – Plate mass/meter	39	DMA-SOP	BS
666	Perforated metal panels – Thickness of the metal plate	39	DMA-SOP	ASTM
667	Perforated metal panels – Thickness of the metal plate	39	DMA-SOP	BS
668	Perforated metal panels – Total plate dimensions	65	DMA-SOP	ASTM
669	Perforated metal panels – Total plate dimensions	65	DMA-SOP	BS
670	Perforated metal panels – Details of the plate perforations	98	DMA-SOP	ASTM
671	Perforated metal panels – Details of the plate perforations	98	DMA-SOP	BS
672	Perforated metal panels – Tensile strength	132	10002: Pt -1	BS EN
673	Perforated metal panels – Tensile strength	132	A370/525	ASTM
674	Perforated metal panels – Response strength	132	10002: Pt -1	BS
675	Perforated metal panels – Response strength	132	A370/525	ASTM
676	Sports surfacing: Rings /Resin/Friction Coefficient-Static and dynamic (dry and humid/wet)	449	D1894	ASTM
677	Sports surfacing: Rings /Resin/elongation when broken	1350	D412	ASTM
678	Sports surfacing: Rings /Resin/dimesons stability (parallel and horizontal)	267	D1204	ASTM
679	Sports surfacing: Rings /Resin/mass/unit area	85	D1622	ASTM
680	Sports surfacing: Rings /Resin/elongation Coefficient at 100% of deformation	1350	D412	ASTM
681	Sports surfacing: Rings /Resin – Tensile strength	1350	D412	ASTM
682	Sports surfacing: Rings /Resin –Total thickness and thickness of one layer	150	D1622	ASTM
683	Sports surfacing: Rings /Resin – Water absorption	450	D570/471	ASTM
684	Stable floorings: Artificial /Resin/Friction Coefficient-Static and dynamic (dry and humid/wet)	468	D1894	ASTM
685	Stable floorings: Artificial /compressive force of rubber at 25% of deformation	234	D1621	ASTM
686	Stable floorings: Artificial /rubber density	150	D792/6111	ASTM
687	Stable floorings: Artificial /rubber elongation at the section	1350	D412	ASTM
688	Stable floorings: Artificial /rubber hardness (Shore A)	189	4991	BS

689	Stable floorings: Artificial /rubber hardness (Shore A)	189	D2240	ASTM
690	Stable floorings: Artificial /dimensions stability – parallel -horizontal	390	D1204	ASTM
691	Stable floorings: Artificial /rubber mass per unit area	85	D1622	ASTM
692	Stable floorings: Artificial/rubber coefficient at 100% of deformation	1350	D412	ASTM
693	Stable floorings: Artificial/rubber resistance to abrasion (Taber)	449	C501	ASTM
694	Stable floorings: Artificial/rubber resistance to section (Taber)	945	D1004	ASTM
695	Stable floorings: Artificial/Tensile strength	1350	D412	ASTM
696	Stable floorings: Artificial/rubber thickness	150	D1622	ASTM
697	Stable floorings: Artificial/rubber water absorption	450	D570/471	ASTM
698	Stable floorings: Artificial/water permeability into rubber	150	1048	DIN
699	Standard testing method to measure coating thickness by x-ray spectrometry	280	B568-98	ASTM
700	Standard testing method of rubber properties – Durometer hardness	135	D2240-05	ASTM
701	Artificial surfaces: PVC roll dimensions -thickness /length/width	72	3261: Pt -1	BS
702	Artificial surfaces: PVC roll dimensions – mass/unit area	85	3261: Pt -1	BS
703	Artificial surfaces: PVC roll dimensions – stability of the tile dimensions: parallel and vertical onto the particles	150	3261: Pt -1	BS
704	Artificial surfaces: PVC roll dimensions – Elasticity impact of the tile: parallel and vertical onto the particles	449	3261: Pt -1	BS
705	Artificial surfaces: PVC roll dimensions – Elasticity testing/parallel and horizontal onto the particles	150	3261: Pt -1	BS
706	Artificial surfaces: PVC roll dimensions – Tile temperature/ parallel and horizontal onto the granules	390	3261: Pt -1	BS
707	Artificial surfaces: PVC roll dimensions – Degree of tile wrinkles	150	3261: Pt -1	BS
708	Artificial surfaces: PVC roll dimensions – Tile humidity movement/ parallel and vertical onto particles	150	3261: Pt -1	BS
709	Artificial surfaces: PVC roll dimensions	425	3261: Pt -1	BS
710	Artificial surfaces: PVC roll dimensions	111	3261: Pt -1	BS
711	Artificial surfaces: PVC roll dimensions	130	3261: Pt -1	BS
712	Artificial surfaces: PVC roll dimensions	236	D2583	ASTM
713	Artificial surfaces: PVC roll dimensions	85	D792	ASTM
714	Artificial surfaces: PVC roll dimensions	215	D638	ASTM
715	Artificial surfaces: PVC roll dimensions	449	D638	ASTM
716	Artificial surfaces: PVC roll dimensions	72	D638	ASTM
717	Artificial surfaces: PVC roll dimensions	111	D570	ASTM
718	Artificial surfaces: PVC roll dimensions	1350	D412	ASTM
719	Artificial surfaces: PVC roll dimensions	267	D1204	ASTM
720	Artificial surfaces: PVC roll dimensions	85	D1622	ASTM
721	Artificial surfaces: PVC roll dimensions	1350	D412	ASTM
722	Artificial surfaces: PVC roll dimensions	1350	D412	ASTM
723	Artificial surfaces: PVC roll dimensions	150	D1622	ASTM
724	Artificial surfaces: PVC roll dimensions	221	D471/570	ASTM
725	Tile: Shining ceramic resistance to citric acid	228	6431 :Pt - 19	BS
726	Guard rail: Drabzine: column coating thickness	189	B -499	ASTM
727	Guard rail: Drabzine: column dimensions	72	M -180	AASHTO
728	Guard rail: Drabzine: column elongation when broken	85	T68	AASHTO
729	Guard rail: Drabzine: column mass per meter	39	M - 180	AASHTO
730	Tensile strength of the column	353	T68	AASHTO
731	Guard rail: Drabzine: elongation strength of the column	132	T68	AASHTO
732	Carbon dioxide content in water	117	Analytical	-
733	Copper content in water	117	Spectrometry	-
734	Cyanide content in water	520	Spectrometry	-

735	Wood structural panel: bending force	429	310	BS EN
736	Wood structural panel: panel density	117	323	BS EN
737	Wood structural panel: Dimensions	78	324 Pt -1	BS EN
738	Wood structural panel: Change of dimensions	312	318	BS EN
739	Wood structural panel: Elasticity coefficient	507	310	BS EN
740	Wood structural panel: Humidity content	156	322	BS EN
741	Wood structural panel: Surface absorption	130	382 Pt -1	BS EN
742	Wood structural panel: Surface hardness by Mohs unit	189	6431 Pt -13	BS
743	Wood structural panel: Thickness swelling	260	317	BS EN
744	Waterproof – film spray – elongation applied upon separation	1350	D412	ASTM
745	Waterproof – film spray – support/pillar hardness	189	D2240	ASTM
756	Waterproof – film spray – Tensile strength upon separation	1350	D412	ASTM
747	Waterproof – film spray – chip elongation upon tearing (average double direction)	325	D882	ASTM
748	Waterproof – film spray – chip elongation upon tearing (average machine direction)	176	D882	ASTM
749	Waterproof – Plastic strip/ chip elongation upon tearing (Average horizontal direction	176	D882	ASTM
750	Waterproof – Plastic strip/ chip mass of unit area	85	D1593	ASTM
751	Waterproof – Plastic strip/ resistance of tearing on the peak of the chip (average horizontal direction)	945	D1004	ASTM
752	Waterproof – Plastic strip/ resistance of tearing on the peak of the chip (average machine direction)	945	D1004	ASTM
753	Waterproof – Plastic strip/ resistance of tearing on the peak of the chip (average horizontal direction)	945	D1004	ASTM
754	Waterproof – Plastic strip/ tensile strength on the peak of the chip (average double direction)	1350	D882	ASTM
755	Waterproof – Plastic strip/ tensile strength on the peak of the chip (average machine direction)	1350	D882	ASTM
756	Waterproof – Plastic strip/ tensile strength on the peak of the chip (average horizontal direction)	1350	D882	ASTM
757	Waterproof – Plastic strip/ chip thickness	72	D5199	BSEN
758	Natural stone: Rockiness testing	2785	12407	BS EN

Soil/Aggregate				
759	Standard test method of large size rubble (aggregate) deterioration resistance to abrasion and shock in Los Angeles machine	95	C535 -12	ASTM
760	Standard test method of large size rubble (aggregate) deterioration resistance to abrasion and shock in Los Angeles machine	95	C131-06	ASTM
761	Chloride content in the aggregate dissolved in acid	120	812: Pt - 117	BS
762	Chloride content in the aggregate dissolved in water	120	812: Pt - 117	BS
763	Soil acidity – Dissolved chloride content	40	1377: Pt - 3	BS
764	Soil acidity – Dissolved materials	150	T289	BS
765	Full chemical analysis of soil	2340	T291	-
766	pH value of soil	35	1377: Pt - 3	BS
767	pH value of soil	35	T289	AASHTO
768	Water soil – soluble Sulphite content	40	1377 : Pt -3	BS
769	Water soil – Chloride content	40	T291	AASHTO
770	Water soil – Soluble Chloride content	40	1377 : Pt -3	BS
771	Water soil – Soluble content	189	T290	AASHTO
772	Water soil – Soluble Magnesium content	163	Spectrometry	BS
773	Aggregate stress interaction	230	C289	ASTM
774	Aggregate: Total Sulphite content	120	812: Pt -117 /118	BS
775	Aggregate: Coarse monosized abrasion value	325	812: Pt -3	BS

776	Aggregate: Coarse monosized angle number	156	812: Pt -1	BS
777	Aggregate: Coarse monosized density	50	812: Pt -2	BS
778	Aggregate: Apparent coarse uncompressed monosized density	50	812: Pt -2	BS
779	Aggregate: Monosized coarse lump of clay and friable particles	165	C142	ASTM
780	Aggregate: Monosized coarse lump of clay and friable particles	165	T112	AASHTO
781	Aggregate: Casting of monosized coarse lumps of clay, silt and dust	124	812: Pt - 1	BS
782	Aggregate: Casting of monosized coarse lumps of clay, silt and dust	98	812: Pt -103.2	BS
783	Aggregate: Value of crushing of coarse monosized aggregate (dry state)	110	812 :Pt -110	BS
784	Aggregate: Value of crushing of coarse monosized aggregate (immersion state)	169	812 :Pt -110	BS
785	Aggregate: Particles elongated out for coarse monosized aggregate (percentage of weight)	163	D4791	ASTM
786	Aggregate: Particles elongated for coarse monosized aggregate (percentage of weight)	163	DMA - SOP	AASHTO
787	Aggregate: Elongation indicator of the coarse monosized aggregate	150	812 :Pt -1	BS
788	Aggregate: Peeling indicator of the coarse monosized aggregate	110	812 :Pt -105.1	BS
789	Aggregate: Flat and elongated coarse monosized particles of aggregate	293	D4791	ASTM
790	Aggregate: Flat coarse monosized particles of aggregate	163	D4791	ASTM
791	Aggregate: Flat coarse monosized particles of aggregate	163	DMA - SOP	AASHTO
792	Aggregate: Shock value of monosized coarse particles of aggregate (immersion state)	137	812 :Pt -112	BS
793	Aggregate: Shock value of monosized coarse particles of aggregate (dry state)	85	812 :Pt -112	BS
794	Lightweight section s in the coarse monosized aggregate specimen	115	C123	ASTM
795	Lightweight section s in the coarse monosized aggregate specimen	115	T118	AASHTO
796	Aggregate: Coarse monosized aggregate -Los Angeles – loss after 100 and 500 cycle	423	C131	ASTM
797	Aggregate: Coarse monosized aggregate -Los Angeles – loss after 100 and 500 cycle	423	Т96	AASHTO
798	Aggregate: Coarse monosized aggregate -Los Angeles – loss after 1000 cycle	95	C535	ASTM
799	Aggregate: Coarse monosized aggregate -Los Angeles – loss after 200 and 1000 cycle	95	C535	ASTM
800	Aggregate: Coarse monosized aggregate -Los Angeles – loss after 500 cycle	95	C131	ASTM
801	Aggregate: Coarse monosized aggregate -Los Angeles – loss after 500	95	Т96	AASHTO
802	Aggregate: Coarse monosized aggregate fine sieve 75 micrometer by water	124	C117	ASTM
803	Aggregate: Coarse monosized aggregate fine sieve 75 micrometer by water	124	T11	AASHTO
804	Aggregate: Coarse monosized aggregate fine sieve 75 micrometer by wet agent	150	C117	ASTM
805	Aggregate: Coarse monosized aggregate fine sieve 75 micrometer by wet agent	150	T11	AASHTO
806	Aggregate: Content of humidity of the coarse monosized aggregate through determination (dry oven)	15	812 :Pt -109	BS
807	Aggregate: Content of humidity of the coarse monosized aggregate through determination (hot plate)	15	8012: Pt -109	BS
808	Aggregate: Distribution of the particles of the coarse monosized aggregate, using dry sieve method	45	8012: Pt -103	BS
809	Aggregate: Distribution of the particles of the coarse monosized aggregate, using wet sieving method	234	8012: Pt -103	BS
810	Aggregate: Space ratio of the coarse monosized particles – compressed specimen	150	8012: Pt -102	BS
811	Aggregate: Space ratio of the coarse monosized particles – compressed specimen	137	8012: Pt -102	BS
812	Aggregate: Value of the polished stone of the coarse monosized aggregate	4000	8012: Pt -103	BS

813	Aggregate: Relative density and water absorption of the coarse monosized aggregate – alternative method	90	8012: Pt -102	BS
814	Aggregate: Relative density and water absorption of the coarse monosized aggregate – wires basket	98	8012: Pt -102	BS
815	Aggregate: Relative density and water absorption of the coarse monosized aggregate – gas cylinder	90	8012: Pt -102	BS
816	Aggregate: Content of the coarse monosized aggregate crust	45	8012: Pt -106	BS
817	Aggregate: Coarse monosized aggregate – sieve test – dry state	45	C136	ASTM
818	Aggregate: Coarse monosized aggregate – sieve test – dry state	45	T27	AASHTO
819	Aggregate: Coarse monosized aggregate – sieve test – wet state	234	C136	ASTM
820	Aggregate: Coarse monosized aggregate – sieve test – wet state	434	T27	AASHTO
821	Aggregate: Coarse monosized aggregate – solidity – Magnesium sulfate solution	400	C88	ASTM
822	Aggregate: Coarse monosized aggregate – solidity – Magnesium sulfate solution	400	T104	AASHTO
823	Aggregate: Coarse monosized aggregate – solidity – Magnesium sulfate solution	400	812: Pt - 121	BS
824	Aggregate: Coarse monosized aggregate – solidity – Sodium sulfate solution	400	C88	ASTM
825	Aggregate: Coarse monosized aggregate – solidity – Sodium sulfate solution	400	T104	AASHTO
826	Aggregate: Coarse monosized aggregate – Specific weight and absorption – wire basket	98	Т85	AASHTO
827	Aggregate: Coarse monosized aggregate – Specific weight and absorption – wire basket	98	C127	ASTM
828	Aggregate: Coarse monosized aggregate – fineness 10% - dry state	190	812: Pt - 111	BS
829	Aggregate: Coarse monosized aggregate – fineness 10% - immersion state	210	812: Pt - 111	BS
830	Aggregate: Content of humidity of the coarse monosized aggregate through determination (hot plate)	59	C566	ASTM
831	Aggregate: Content of humidity of the coarse monosized aggregate through determination (dry oven)	50	C566	ASTM
832	Aggregate: Content of humidity of the coarse monosized aggregate through determination (dry oven)	50	T255	AASHTO
833	Aggregate: Coarse mono-weight aggregate – compression by the shaft	110	C29/ C29 M	ASTM
834	Aggregate: Coarse mono-weight aggregate – compression by the shaft	110	T19	AASHTO
835	Aggregate: Coarse mono-weight aggregate – Dredging	110	C29/ C29 M	ASTM
836	Aggregate: Coarse mono-weight aggregate – Dredging	110	T19	AASHTO
837	Aggregate: spaces in the mono-weight coarse aggregate specimen- compression by a shaft	110	C29/ C29 M	ASTM
838	Aggregate: spaces in the mono-weight coarse aggregate specimen – compression by a shaft	110	T19	AASHTO
839	Aggregate: spaces in the mono-weight coarse aggregate specimen – dredging	110	C29/ C29 M	ASTM
840	Aggregate: spaces in the mono-weight coarse aggregate specimen – dredging	110	T19	AASHTO
841	Aggregate: Distribution of filling particles size – dry method	104	812 : Pt -103	BS
842	Aggregate: Filling particles density by using water	60	812 : Pt -2	BS
843	Aggregate: Distribution of filling particles size – humid method	130	812 : Pt -103	BS
844	Aggregate: Analysis of the filing particles sieve – dry method	104	D546	ASTM
845	Aggregate: Analysis of the filing particles sieve – dry method	104	Т37	AASHTO
846	Aggregate: Analysis of the filing particles sieve – humid method	130	D546	ASTM
847	Aggregate: Analysis of the filing particles sieve – humid method	130	T37	AASHTO
848	Aggregate: Specific weight of the filling particles by using naphtha	98	4550	BS
849	Aggregate: Specific weight of the filling particles by using naphtha	98	T133	AASHTO
850	Aggregate: Specific weight of the filling particles by using water	91	D854	ASTM
851	Aggregate: Specific weight of the filling particles by using water	91	T100	AASHTO

852	Aggregate: Specific weight of the filling particles by using naphtha	98	C188	ASTM
853	Aggregate: Fine aggregate/sand bulk density – number of angles	104	812: Pt -1	BS
854	Aggregate: Fine aggregate/sand bulk density – compressed	50	812: Pt -2	BS
855	Aggregate: Fine aggregate/sand bulk density – uncompressed	50	812: Pt -2	BS
856	Aggregate: Fine aggregate/sand accumulation of fine aggregate at a specific humidity level	234	812: Pt -2	BS
857	Aggregate: Fine aggregate/sand lumps of clay and shattered granules	90	C142	ASTM
858	Aggregate: Fine aggregate/sand lumps of clay and shattered granules	90	T112	AASHTO
859	Aggregate: Fine aggregate/sand clay content, slit and dust – filtering	124	812: Pt -1	BS
860	Aggregate: Fine aggregate/sand clay content, slit and dust – work position/status	104	812: Pt -1	BS
861	Aggregate: Fine aggregate/sand clay content, slit and dust – sedimentation	98	812: Pt -103.2	BS
862	Aggregate: Fine aggregate/sand value of crushing – oven drying state	75	812: Pt -110	BS
863	Aggregate: Fine aggregate/sand value of crushing – immersion state	169	812: Pt -110	BS
864	Aggregate: Fine aggregate/sand shock value – immersion state	130	812: Pt -112	BS
865	Aggregate: Fine aggregate/sand shock value – oven drying state	75	812: Pt -112	BS
866	Aggregate: Fine aggregate/sand Loss Angeles – Loss after 100 and 500 cycles	390	C131	ASTM
867	Aggregate: Fine aggregate/sand Loss Angeles – Loss after 100 and 500 cycles	390	Т96	AASHTO
868	Aggregate: Fine aggregate/sand Loss Angeles – Loss after 500 cycles	293	C131	ASTM
869	Aggregate: Fine aggregate/sand Loss Angeles – Loss after 500 cycles	293	Т96	AASHTO
870	Aggregate: Fine aggregate/sand finer materials of 75 micrometers (200 number) by water	20	C117	ASTM
871	Aggregate: Fine aggregate/sand finer materials of 75 micrometers (200 number) by water	117	T11	AASHTO
872	Aggregate: Fine aggregate/sand finer materials of 75 micrometers (200 number) by wet agent	137	C117	ASTM
873	Aggregate: Fine aggregate/sand finer materials of 75 micrometers (200 number) by wet agent	137	T11	AASHTO
874	Aggregate: Fine aggregate/sand humidity content – specific method – oven drying state	59	812: Pt -109	BS
875	Aggregate: Fine aggregate/sand humidity content – specific method – Microwave oven	78	812: Pt -109	BS
876	Aggregate: Fine aggregate/sand granules size – dry sieve	143	812: Pt -103	BS
877	Aggregate: Fine aggregate/sand granules size – wet sieving	169	812: Pt -103	BS
878	Aggregate: Fine aggregate/sand percentage of gaps – compressed specimen	117	812: Pt -2	BS
879	Aggregate: Fine aggregate/sand percentage of gaps – uncompressed specimen	104	812: Pt -2	BS
880	Aggregate: Fine aggregate/sand relative density and water absorption – Bike-O-Meter	98	812: Pt -2	BS
881	Aggregate: Fine aggregate /sand relative density and water absorption – gas cylinder	78	812: Pt -2	BS
882	Aggregate: Fine aggregate /sand - sand equivalent value	100	D2419	ASTM
883	Aggregate: Fine aggregate/sand - sand equivalent value	260	T176	AASHTO
884	Aggregate: Fine aggregate /sand – sieving analysis – dry method	143	C136	ASTM
885	Aggregate: Fine aggregate /sand – sieving analysis – dry method	143	T27	AASHTO
886	Aggregate: Fine aggregate /sand – sieving analysis – wet method	169	C136	ASTM
887	Aggregate: Fine aggregate /sand – sieving analysis – wet method	169	T27	AASHTO
888	Aggregate: Fine aggregate /sand – sieving analysis – finesses coefficient	156	C136	ASTM
889	Aggregate: Fine aggregate /sand – strength – Sulfate Magnesium solution	175	C88	ASTM

890	Aggregate: Fine aggregate /sand – strength – Sulfate Magnesium solution	175	T104	AASHTO
891	Aggregate: Fine aggregate /sand – strength – Sulfate Magnesium solution	175	812: Pt -121	BS
892	Aggregate: Fine aggregate /sand – strength – Sulfate Sodium solution	175	C88	ASTM
893	Aggregate: Fine aggregate /sand – strength – Sulfate Sodium solution	175	T104	AASHTO
894	Aggregate: Fine aggregate /sand relative density and water absorption – Bike-O-Meter	60	T84	AASHTO
895	Aggregate: Fine aggregate /sand relative density and water absorption – Bike-O-Meter	60	C128	ASTM
896	Aggregate: Fine aggregate/sand – fineness value 10% - oven drying state	75	812: Pt -111	BS
897	Aggregate: Fine aggregate/sand – fineness value 10% - immersion state	234	812: Pt -111	BS
898	Aggregate: Fine aggregate/sand – total humidity content - oven drying state	15	C566	ASTM
899	Aggregate: Fine aggregate/sand – total humidity content - oven drying state	59	T255	AASHTO
900	Aggregate: Fine aggregate/sand – weight unit – compression by a shaft	59	C29 / C29M	ASTM
901	Aggregate: Fine aggregate/sand – weight unit – compression by a shaft	59	T19	AASHTO
902	Aggregate: Fine aggregate/sand – weight unit – dredging	52	C29 / C29M	ASTM
903	Aggregate: Fine aggregate/sand – weight unit – dredging	52	T19	AASHTO
904	Aggregate: Fine aggregate/sand –spaces in the specimen – pressure (compression) by shaft	65	C29 / C29M	ASTM
905	Aggregate: Fine aggregate/sand –spaces in the specimen – pressure (compression) by shaft	65	T19	AASHTO
906	Aggregate: Fine aggregate/sand –spaces in the specimen – dredging	59	C29 / C29M	ASTM
907	Aggregate: Fine aggregate/sand –spaces in the specimen – dredging	59	T19	AASHTO
908	Aggregate: 5 millimeters – organic impurities	98	T21	AASHTO
909	Aggregate: 5 millimeters – organic impurities	98	C40	ASTM
910	Calcium silicate units for building : dimensions	20	187	BS
911	Calcium silicate units for building : total density	26	187	BS
912	Calcium silicate units for building : net density (final density)	26	187	BS
913	Calcium silicate units for building : percentage of space area	33	772 Pt -2	BS EN
914	Calcium silicate units for building : percentage of space volume	39	772 Pt -9	BS EN
915	Calcium silicate units for building : The expected minimum compressive force (compression)	150	187	BS
916	Cement mixtures: Standard method for cement humidity test – relationship with soil density	385	T134-05	AASHTO
917	Cement mixtures: Standard method for testing of drying and wetting in cement – compressed soil test	390	T134-13	AASHTO
918	Cement mixtures: Standard method for cement humidity test – relationship with soil density (weight unit)	385	D558 -11	ASTM
919	Standard guide for the concrete of rock content – aggregate in concrete test	2785	C295 /C295M - 12	ASTM
920	Building blocks: Lightweight EPS/Perlite – humidity content	85	C140	ASTM
921	Building blocks: Lightweight EPS/Perlite – formal dimensions	39	C140	ASTM
922	Building blocks: Lightweight EPS/Perlite – Weight upon delivery	39	C513	ASTM
923	Building blocks: Lightweight EPS/Perlite – Weight after oven drying	111	C513	ASTM
924	Building blocks: Lightweight EPS/Perlite – water absorption	130	C140	ASTM
925	Rock density – by immersion in water	72	1377 : Pt -2.7.3	BS
926	Rock density – by measurement	72	1377 : Pt -2.7.2	BS
927	Rock thickness – through water displacement	72	1377 : Pt -2.7.4	BS
928	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	221	BS -1377	BS

929	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	221	C42	ASTM
930	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	221	T24	AASHTO
931	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	143	BS -1377	BS
932	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	143	C42	ASTM
933	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	143	T24	AASHTO
934	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	182	BS -1377	BS
935	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	182	C42	ASTM
936	Rock drilling by base 100 millimeters in the specimen provided to the laboratory	182	T24	AASHTO
937	Rocks – tensile strength of splitting the sound/proper rock (structure)	52	D3967	ASTM
938	Rocks – Unconfined compressive force of the rock (structure)	143	D2938	ASTM
939	Rocks – stone resistance to corrosion	390	C241	ASTM
940	Rocks – Specific weight of the stone	91	C97	ASTM
941	Rocks - compressive force of the rock – in the dry state in parallel with the crack	111	C170	ASTM
942	Rocks - compressive force of the rock – in the dry state in vertical manner with the crack	111	C170	ASTM
943	Rocks - compressive force of the rock – in the wet state in parallel with the crack	111	C170	ASTM
944	Rocks - compressive force of the rock – in the wet state in vertical manner with the crack	111	C170	ASTM
945	Rocks - Modulus of rupture of stone in the dry state in vertical manner with the crack	202	C99	ASTM
946	Rocks - Modulus of rupture of stone in the dry state in vertical manner with the crack	202	C99	ASTM
947	Rocks - Modulus of rupture of stone in the wet state in parallel with the crack	202	C99	ASTM
948	Rocks - Modulus of rupture of stone in the wet state in parallel with the crack	202	C99	ASTM
949	Soil: Distribution of granules size through dry sieving	45	1377 : Pt -2.9.3	BS
950	Soil: Distribution of granules size through sedimentation method (Hydrometer method)	120	1377 : Pt -2.9.5	BS
951	Soil: Distribution of granules size through sedimentation method (pipette method)	143	1377 : Pt -2.9.4	BS
952	Soil: The California Bearing Ratio (CBR) – through kinetic pressure (in case of immersion)	250	1377 : Pt -4.7.2	BS
953	Soil: The California Bearing Ratio (CBR) – through kinetic pressure (in case of non-immersion)	150	1377 : Pt -4.7.3	BS
954	Soil: The California Bearing Ratio (CBR) – compressed specimen in the laboratory (in case of immersion)	250	D1883	ASTM
955	Soil: The California Bearing Ratio (CBR) – compressed specimen in the laboratory (in case of immersion)	250	T193	AASHTO
956	Soil: The California Bearing Ratio (CBR) – compressed specimen in the laboratory (in case of non-immersion)	150	D18883	ASTM
957	Soil: The California Bearing Ratio (CBR) – compressed specimen in the laboratory (in case of non-immersion)	150	T193	AASHTO
958	Soil: carbonate content	189	1377 : Pt -3	BS
959	Soil: Classification of soil types for engineering purposes	325	D2487	ASTM
960	Soil: strengthening (cohesion) properties – types of soil (mono- dimensional)	442	1377 : Pt -5:3	BS
961	Soil: strengthening (cohesion) properties – types of soil (mono- dimensional)	442	D2435	ASTM
962	Density and weight unit of soil	442	T216	AASHTO
963	Soil: Density and unit weight of soil in its place through rubber balloon method	65	T205	AASHTO

964	Soil: Density and unit weight of soil in its place through rubber balloon method	65	D2167	ASTM
965	Soil: Density by immersion in water method	72	1377 : Pt -2:7:3	ASTM
966	Soil: Density by measurement	72	1377 : Pt -2:7:2	AASHTO
967	Soil: Density by displacement of water	72	1377 : Pt -2:7:4	BS
968	Soil: Density and unit weight of soil in its place through moving cylinder method	65	T204	ASTM
969	Soil: Density and unit weight of soil in its place through sand cone method	50	T191	AASHTO
970	Soil: Density and unit weight of soil in its place through moving cylinder method	65	D2937	ASTM
971	Soil: Density and unit weight of soil in its place through sand cone method	50	D1556	ASTM
972	Soil: Determination of elastic limit (plastic)	72	Т90	AASHTO
973	Soil: Determination of linear shrinkage	80	1377 : Pt -2:6	BS
974	Soil: Determination of liquid limit	72	D4318	ASTM
975	Soil: Determination of liquid limit	72	T89	AASHTO
976	Soil: Determination of liquid limit (Mono-point)	55	D4318	ASTM
977	Soil: Determination of liquid limit (Mono-point)	55	T89	AASHTO
978	Soil: Determination of the maximum density of the aggregate soil	72	1377: Pt – 4: 4.3	BS
979	Soil: Determination of the maximum density of sand	72	1377: Pt – 4: 4.2	BS
980	Soil: Determination of the minimum density of the aggregate soil	72	1377: Pt – 4: 4.5	BS
981	Soil: Determination of the maximum density of sand	72	1377: Pt – 4: 4.4	BS
982	Soil: Determination of elastic limit (plastic)	72	1377: Pt – 2: 5.3	BS
983	Soil: Determination of shrinkage factors	221	D427	BS
984	Soil: Determination of shrinkage factors	221	T92	ASTM
985	Soil: Determination of elastic limit (plastic)	72	D4318	ASHTO
986	Direct shear strength (solid and hollow (vacuum)	520	D3080	ASTM
987	Direct shear strength (solid and hollow (vacuum)	520	T236	ASHTO
988	Direct shear strength (non-solid and non-hollow (vacuum)	450	1377: Pt 4:- 3.5. 3.6	BS
989	Direct shear strength (non-solid and non-hollow (vacuum)		1377: Pt 4:- 3.3. 3.4	BS
990	450 Soil: Dry density/Relationship with the humidity content (4.5 KG/450 MM – Rammer	221	1377: Pt 4:- 3.7	BS
991	Soil: Dry density/Relationship with the humidity content (2.5 KG/300 MM – Rammer	221	1377: Pt 9:- 2.4	BS
992	Soil: Dry density/Relationship with humidity (Vibrating compaction hammer)	221	1377: Pt 9:- 2.1. 2.2	BS
993	Soil: Density on-site by structural (main) cutting method	65	1377: Pt 9:- 3.5. 3.6	BS
994	Soil: Density on-site soil replacement (large sand cone)	78	1377: Pt 4:- 201 2.2	BS
995	Soil: Density on-site soil replacement (large sand cone)	65	1377: Pt 2:- 4.5	BS
996	Soil: Liquid limit by Casagrande machine	72	1377: Pt 2:- 4.6	BS
997	Soil: Liquid limit by Casagrande machine (mono-point)	55	1377: Pt 2:- 4.3	BS
998	Soil: Liquid limit by cone penetration test	72	1377: Pt 2:- 4.4	BS
999	Soil: Liquid limit by cone penetration test (mono-point)	55	1377: Pt 4:- 3	BS

1001	Soil: Material is finer than 75 micrometers – sieve (No.200)	52	D4253	ASTM
1002	Soil: Maximum coefficient of density by vibratory table method	221	D4254	ASTM
1003	Soil: Minimum coefficient of density and relative density	143	T217	AASHTO
1004	Soil: Humidity content through Calcium carbide method	72	T217	AASHTO
1005	Soil: Humidity content through oven drying method	72	1377: P -2.3	BS
1006	Soil: Humidity content through oven drying method	15	D2216	ASTM
1007	Soil: Humidity content through oven drying (microwave) method	72	D4643	ASTM
1008	Soil: Relationship of humidity/density (2.49 KG/305 Millimeters (Rammer)	221	D698	ASTM
1009	Soil: Relationship of humidity/density (2.50KG/305 Millimeters (Rammer)	221	Т99	AASHTO
1010	Soil: Relationship of humidity/density (4.54 KG/457 Millimeters (Rammer)	221	T180	AASHTO
1011	Soil: Relationship of humidity/density (4.54 KG/457 Millimeters (Rammer)	110	D1557	ASTM
1012	Soil: Mono organic material content (combustion loss)	45	1377 : Pt-3	BS
1013	Soil: Organic material content (combustion loss)	117	T267	AASHTO
1014	Soil: Mono organic material content (wet combustion)	98	T194	AASHTO
1015	Soil: Particles volume analysis by hydrometer	120	D422	ASTM
1016	Soil: Particles volume analysis by hydrometer	143	Т88	AASHTO
1017	Soil: Particles volume analysis by sieving	72	D422	ASTM
1018	Soil: Particles volume analysis by sieving	72	Т88	AASHTO
1019	Soil: Particles volume analysis by wet sieving	72	1377 : Pt-2 :6.2	BS
1020	Soil: Permeability of granulated soil by constant compression method	300	1377 : Pt-2 5.5	BS
1021	Soil: Permeability of granulated soil by constant compression method	300	D2434	ASTM
1022	Soil: Permeability of granulated soil by constant compression method	300	T215	AASHTO
1023	Soil: Elastic fineness by Sand Equivalent Test	100	D2419	ASTM
1024	Soil: Elastic fineness by Sand Equivalent Test	195	T176	AASHTO
1025	Soil: Direct shear force by using small shear box (solid and hollow or vacuum)	520	1377 : Part 7 : 4	BS
1026	Soil: Direct shear force by using small shear box (solid and hollow or vacuum)	143	1377: Pt – 7 :3	BS
1027	Soil: Direct shear force by using crosshead shear at the laboratory	143	D4648	ASTM
1028	Soil: Specific weight by using gas cylinder machine	72	1377: Pt – 2 :8.2	BS
1029	Soil: Specific weight by using large Picometer	72	1377: Pt – 2 :8.4	BS
1030	Soil: Specific weight by using small Picometer	72	1377: Pt – 2 :8.3	BS
1031	Soil: Specific weight by using Picometer	90	D854	ASTM
1032	Soil: Specific weight by using Picometer	72	T100	AASHTO
1033	Soil: Swelling soil or sticky soil stability	442	1377: Pt – 2 :5.4	BS
1034	Soil: Swelling soil or cohesive soil stability (mono-dimensional)	442	D4546	ASTM
1035	Soil: Total sulfate content	40	1377 : Pt -3	BS
1036	Soil: Unconfined compressive force in the cohesive soil	143	1377: Pt – 7 :7	BS
1037	Soil: Unconfined compressive force in the cohesive soil	143	D2166	ASTM
1038	Soil: Standard method of the three pivotal unified unvacuumed compression test on the cohesive soil	520	T297 -94	AASHTO
1039	Soil: Standard method to determine the liquid limit of soil	72	T89 -13	AASHTO
1040	Soil: Standard method to determine the elastic limit and elasticity modulus of soil	72	T90-00	AASHTO
1041	Standard method of the direct shear test of soil under the unified vacuumed requirements	520	T236-08	AASHTO

1042	Soil: Standard method of the soil relationship test – soil density by using the rammer 2.5 KG (5.5 pounds) and projection from 305 millimeters (12 inches)	221	T99-10	AASHTO
1043	Soil: Standard method of the soil relationship test – soil density by using the rammer 4.54 KG (10 pounds) and projection from 457 millimeters (18 inches)	221	T236-08	AASHTO
1044	Soil: Standard method for testing of the unified soil properties – mono-dimensional	442	T2016-07	AASHTO
1045	Soil: Standard method for testing of the soil particles volume	143	T88 -13	AASHTO
1046	Soil: Standard method for testing of the elastic fine component in the gradated soil and aggregate by using the sand equivalent test (ASTM D2419)	150	T176 -08	AASHTO
1047	Standard method for testing of California Bearing Ratio (CBR)	340	T193 -13	AASHTO
1048	Standard method for testing of the compression force of the unconfined cohesive soil	143	T208 -10	AASHTO
1049	Standard method for testing of the unified tri-pivot unvacuumed compression force on a cohesive soil	390	T296 -10	AASHTO
1050	Standard method for testing of California Bearing Ratio (CBR) of the lab compressed soil	340	D1883 - 07e2	ASTM
1051	Standard method for testing of the unified tri-pivot unvacuumed compression force on a cohesive soil	520	D4767-11	ASTM
1052	Standard method for density test, relative density (specific weight) and absorption in the coarse aggregate	60	T85 -13	AASHTO
1053	Standard method for density test, relative density (specific weight) and absorption in the coarse aggregate	60	C 127-12	ASTM
1054	Standard method for density test, relative density (specific weight) and absorption in the coarse aggregate	60	C 127-12	ASTM
1055	Standard method for the direct shear soil strength test under unified vacuum conditions	520	D3080/D3080 M - 11	ASTM
1056	Standard method for the testing of the materials that are finer than 75 Micrometer sieve (Number: 200) in the mineral aggregate by washing	114	C117 -13	ASTM
1057	Standard method for the testing of particles volume in soil analysis	120	D422-06	ASTM
1058	Standard method for permeability of granulated soil (constant pressure)	221	D2434 -68	ASTM
1059	Standard test method of the large coarse aggregate deterioration by abrasion and shock in Los Angeles machine	95	T96 -02	AASHTO
1060	Standard test method of the equivalent value of soil and fine aggregate	150	D2419-09	ASTM
1061	Standard test method of fine and coarse aggregate sieve analysis	45	C136-06	ASTM
1062	Standard test method of the unconfined compression force of the cohesive soil	143	D2166/ D2166M -13	ASTM
1063	Standard method of the ununified tri-pivot unvacuumed compression on the cohesive soil test	390	D2850 -03a	ASTM
1064	Standard method of the soil compaction lab properties test by using modified stress	110	D1557 -12	ASTM
1065	Standard method of the soil compaction lab properties test by using standard stress	221	D698 -12	ASTM
1066	Standard methods of the liquid limit and elastic (plastic) and soil elasticity indicator test	55	D431810	ASTM
1067	Standard methods of the mon-dimensional unified soil properties through increasing load test	525	D2435/ D2435M -11	ASTM
1068	Standard methods of the mono-dimensional swelling or cohesive soil collapse test	525	D4546 -08	ASTM
1069	Standard methods of the soil particles volume distribution (gradation) test	45	D6913-04	ASTM
1070	Standard test method of the specific weight of solids in soil by the water Picometer	60	D854 - 10	ASTM

Industrial /Steel and Minerals/Metals					
1071	Mineral – Aluminum: full analysis	1300	Spectrometry	-	
1072	Mining: The number of inclusion of the site along with a picture (excluding preparation of the sample)	477	E345-13	ASTM	

1073	Mineral – solid: Carbon, phosphorus, sulfite and carbon equivalent value (CEV)	383	4449: OES	BS
1074	Mineral – solid: Chemical analysis: Iron, carbon, sulphate, phosphorus, chromium, magnesium, molybdenum and nickel	1300	Spectrometry	-
1075	Mineral – solid: Chemical analysis: Carbon, sulphate, phosphorus and magnesium	180	A615	ASTM
1076	Mineral – solid: Full analysis	1950	Spectrometry	-
1077	Standard procedure of the precise cutting of metals and alloys	325	E407-07e1	ASTM
1078	Aluminum: Ductility elongation properties	72	10002 – Pt -1	BS
1079	Aluminum: Ductility tensile strength properties	168	10002 – Pt -1	BS
1080	Aluminum: Ductility strength properties (Guide 0.2%)	132	488: Pt -2	BS
1081	Screw/bolt tightening test – whole block stake for each test	132	F606	ASTM
1082	Screw/bolt tightening test – pivotal whole block	132	A370/F606	ASTM
1083	Screw/bolt tightening test – whole block stake	1352	A370	ASTM
1084	Coating thickness in the microscopic test	446	A90/A153/ a123	ASTM
1085	Mining: preparation the specimen for hardness test	260	Lab Method	Various
1086	Mining: scope of specimen index (excluding specimen preparation)	477	E1268	ASTM
1087	Mining: Measuring of the particles volume by comparison of one picture of the site (excluding specimen preparation)	199	E112	ASTM
1088	Mining: Measuring of the particles volume by linear counting - one picture of the site (excluding specimen preparation)	398	E112	ASTM
1089	Mining: Number of including of 6 sites including preparation of the specimen	3580	E45	ASTM
1090	Mining: Number of inclusion of the site (excluding specimen preparation)	477	E45	ASTM
1091	Mining: Microscopic analysis – Description and one picture of the site (excluding specimen preparation)	119	DMA	ASTM
1092	Mining: Microscopic analysis – Description and one picture (SEM) of the site (excluding specimen preparation)	240	DMA	ASTM
1093	Mining: Microscopic analysis – Description and one picture (SEM) of the site including EDAX and (excluding specimen preparation)	500	DMA	ASTM
1094	Mining: Determination of the surface volume (number of Ferrite) – one SEM of the site (excluding specimen preparation)	477	E562	ASTM
1095	Mineral/Metal: Solid: Zinc weight/Zinc-iron alloy coating	189	A90	ASTM
1096	Mineral/Metal: Solid: Zinc weight/Zinc-iron alloy coating	189	Т65	AASHTO
1097	Bolt/Screw ring load guide	132	F606	ASTM
1098	Specimen preparation for microscopic analysis	314	DMA	ASTM
1099	Specimen preparation for microscopic analysis (SEM)	500	DMA	ASTM
1100	Standard procedure of ultrasound waves conductivity of welding test by using phase matrix	1300	E2700 - 09	ASTM
1101	Standard gauge of dye penetrant of general industry test	650	E165/E165 M -12	ASTM
1102	Standard procedure of dye penetrant	650	E1417 /E1417 M - 13	ASTM
1103	Standard procedure to measure the coating thickness by inductive – magnetic current (electromagnetic method)	189	525/E376 -11	ASTM
1104	The undamaging standard procedure to gauge the dry film thickness of non-magnetic coatings applied to ferrous metals and non- magnetic and non-conductive coatings applied to non-ferrous metals	126	D7091-12	ASTM
1105	The unglazed steel braid standard – seven wires for prestressed concrete	1560	A416 / A416 M -12a	ASTM
1106	Standard test method– Brinell Hardness Test for metals	189	E10 -12	ASTM
1107	Standard test method to gauge metal coating weight/mass on steel by X-ray fluorescence	280	A754/A754 M - 11	ASTM
1108	Standard test method– Vickers and Knoop hardness test to gauge hardness of materials	189	E384 – 11e1	ASTM
1109	Standard test method to gauge coating thickness magnetically: Non- magnetic coating on the base magnetic metals	126	B499 -09	ASTM

1110	Standard test method to gauge anodic coating thickness on aluminum and other non-conductive coatings on base non-magnetic metals by inductive current devices	126	B244 -09	ASTM
1111	Standard test method to determine the mechanical properties and definition of mechanical test of steel products (curvature test)	140	A370 – 12a	ASTM
1112	Standard test method to determine the mechanical properties and definition of mechanical test of steel products (tensile test)	353	A370 – 12a	ASTM
1113	Standard test method to determine the mechanical properties and definition of external and internal linking tools – screws, link rings, tension and nails guide rings	1352	F606 – 11a	ASTM
1114	Standard test method- Rockwell Hardness Test of Metals	189	E18 -12	ASTM
1115	Standard test method for metals tensile test	350	E8/E8M-13	ASTM
1116	Standard test method for pressure – metals test according to room temperature	310	E9 -09	ASTM
1117	Stainless steel installation: using ASTM E 1086 method	402.5	E1086 -08	ASTM
1118	Stainless steel tissue: Elongation of weld – vertical cable	85	1052	BS
1119	Stainless steel tissue: Elongation of weld – horizontal cable	85	1052	BS
1120	Stainless steel tissue: Welded grid dimensions	78	DMA -SOP	BS
1121	Stainless steel tissue: Welded plastic cover (sheet) thickness – vertical cable/wire	59	DMA -SOP	BS
1122	Stainless steel tissue: Welded plastic cover (sheet) thickness – horizontal cable/wire	59	DMA -SOP	BS
1123	Stainless steel tissue: Base diameter of welded stainless steel – vertical wire/cable	39	1052	BS
1124	Stainless steel tissue: Base diameter of welded stainless steel – horizontal wire/cable	39	1052	BS
1125	Stainless steel tissue: Weld tensile strength - vertical wire/cable	161	1052	BS
1126	Stainless steel tissue: Weld tensile strength - horizontal wire/cable	161	1052	BS
1127	Stainless steel tissue: Welds ductility strength – vertical wire/cable	161	1052	BS
1128	Stainless steel tissue: Welds ductility strength – horizontal wire/ cable	161	1052	BS
1129	Stainless steel reinforcement: Glazed rod mass – adhesion of coatings	425	7295 : Pt -1	BS
1130	Stainless steel reinforcement: Glazed rod mass – adhesion of coatings	425	C775	ASTM
1131	Stainless steel reinforcement: Glazed rod mass – durability of coatings	91	7295: Pt-1	BS
1132	Stainless steel reinforcement: Glazed rod mass – durability of coatings	91	C775	ASTM
1133	Stainless steel reinforcement: Glazed rod mass per flow meter -	39	10002 : Pt -1	BS
1134	Stainless steel reinforcement: Glazed rod mass per flow meter -	39	C370 /C615	ASTM
1135	Stainless steel reinforcement: Percentage of the glazed/coated rod elongation (length measurement d5)	85	10002 : Pt -1	BS
1136	Stainless steel reinforcement: Percentage of the glazed/coated rod elongation (length measurement d5)	85	C370 /C615	ASTM
1137	Stainless steel reinforcement: Tensile strength of the glazed/coated rod	111	10002 : Pt -1	BS
1138	Stainless steel reinforcement: Tensile strength of the glazed/coated rod	111	C370 /C615	ASTM
1139	Stainless steel reinforcement: Thickness of the glazed/coated rod	111	7295: Pt-1	BS
1140	Stainless steel reinforcement: Thickness of the glazed/coated rod	111	C775	ASTM
1141	Stainless steel reinforcement: Ductility of the glazed/coated rod	96	10002 : Pt -1	BS
1142	Stainless steel reinforcement: Ductility of the glazed/coated rod	96	C370 /C615	ASTM
1143	Stainless steel reinforcement: Curvature test for the unglazed/ uncoated rod	40	4449	BS
1144	Stainless steel reinforcement: Curvature test for the unglazed/ uncoated rod	40	C370 /C615	ASTM
1145	Stainless steel reinforcement: Mass of the unglazed/uncoated rod per flow meter	39	10002 : Pt -1	BS
1146	Stainless steel reinforcement: Mass of the unglazed/uncoated rod per flow meter	39	C370 /C615	ASTM

1147	Stainless steel reinforcement: Percentage of the unglazed/uncoated rod elongation (length measurement 20 millimeters)	85	C370 /C615	ASTM
1148	Stainless steel reinforcement: Percentage of the unglazed/uncoated rod elongation (length measurement 5d)	85	10002 : Pt -1	BS
1149	Stainless steel reinforcement: Recurvature test for the unglazed/ uncoated rod	45	4449	BS
1150	Stainless steel reinforcement: Tensile strength of the unglazed/ uncoated stainless-steel rod	60	10002 : Pt -1	BS
1151	Stainless steel reinforcement: Tensile strength of the unglazed/ uncoated stainless-steel rod	60	C370 /C615	ASTM
1152	Stainless steel reinforcement: Ductility strength of the unglazed/ uncoated stainless-steel rod	96	10002 : Pt -1	BS
1153	Stainless steel reinforcement: Ductility strength of the unglazed/ uncoated stainless-steel rod	96	C370 /C615	ASTM
1154	Stainless steel reinforcement: Mass of wire/cable braids per flow meter /sectional area	72	10002 : Pt -1	BS
1155	Stainless steel reinforcement: Mass of wire/cable braids per flow meter /sectional area	72	C370	ASTM
1156	Stainless steel reinforcement: Number of wire/cable braids	26	10002 : Pt -1	BS
1157	Stainless steel reinforcement: Number of wire/cable braids	26	C370	ASTM
1158	Stainless steel reinforcement: Elongation percentage	85	10002 : Pt -1	BS
1159	Stainless steel reinforcement: Elongation percentage	85	C370	ASTM
1160	Stainless steel reinforcement: Tensile strength of wire/cable braids	2289	10002 : Pt -1	BS
1161	Stainless steel reinforcement: Tensile strength of wire/cable braids	2289	C370	ASTM
1162	Stainless steel reinforcement: Tensile strength of wire/cable braids	2289	10002 : Pt -1	BS
1163	Stainless steel reinforcement: Tensile strength of wire/cable braids	2289	C370	ASTM
1164	Coated zinc steel chip: Thickness	189	A525/E376	ASTM
1165	Coated zinc steel chip: Elongation	72	A525/E376	ASTM
1166	Coated zinc steel chip: Front dimensions	39	DMA-SOP	ASTM
1167	Coated zinc steel chip: Unit area mass	85	DMA-SOP	ASTM
1168	Coated zinc steel chip: Details of shape	65	DMA-SOP	ASTM
1169	Coated zinc steel chip: Tensile strength	150	A370/525	ASTM
1170	Coated zinc steel chip: Thickness	72	DMA-SOP	ASTM
1171	Coated zinc steel chip: Tension response	132	A370/525	ASTM
1172	Stainless steel braids: Stainless steel rod specification – Flat and formed carbon to reinforce concrete	280	A615/A615M -12	ASTM
1173	Stainless steel braids: Uncoated wire/cable	72	A370/A416 & E328	ASTM
1174	Stainless steel braids: Uncoated diameter of the braid		A370/A416 & E328	ASTM
1175	Stainless steel braids: Uncoated elongation	85	A370/A416 & E328	ASTM
1176	Uncoated stainless-steel braids: Mass per flow meter		A370/A416 & E328	ASTM
1177	Uncoated stainless-steel braids: Uncoated part of spiral torsion	33	A370/A416 & E328	ASTM
1178	Uncoated stainless-steel braids: Tensile strength	2289	A370/A416 & E328	ASTM
1179	Uncoated stainless-steel braids: Elongation tensile strength	2289	A370/A416 & E328	ASTM
1180	Steel structures: Coated pipes – Pipe lining durability	91	7295: Pt -1	BS
1181	Steel structures: Coated pipes – Pipe lining durability	91	C775	ASTM
1182	Steel structures: Coated pipes – Pipe mass per flow meter	39	7295: Pt -1	BS
1183	Steel structures: Coated pipes – Pipe mass per flow meter	39	C370/C615	ASTM
1184	Steel structures: Coated pipes – External diameter	39	10002 : Pt -1	BS
1185	Steel structures: Coated pipes – External diameter	39	C370/C615	ASTM
1186	Steel structures: Coated pipes – Percentage of pipe elongation (length measurement: 5.65xSo0.5)	85	10002 : Pt -1	BS

1187	Steel structures: Coated pipes – Percentage of pipe elongation (length measurement: 5.65xSo0.5)	85	C370/C615	ASTM
1188	Steel structures: Coated pipes /Pipe tensile strength including location of the fracture	353	10002 : Pt -1	BS
1189	Steel structures: Coated pipes /Pipe tensile strength including location of the fracture	353	C370/C615	ASTM
1190	Steel structures: Coated pipes /Lining (packaging) thickness	111	7295: Pt-1	BS
1191	Steel structures: Coated pipes /Lining (packaging) thickness	111	B-499	ASTM
1192	Steel structures: Coated pipes – Pipe wall thickness	39	10002 : Pt -1	BS
1193	Steel structures: Coated pipes – Pipe wall thickness	39	C370/C615	ASTM
1194	Steel structures: Coated pipes – Pipe tensile strength	132	10002 : Pt -1	BS
1195	Steel structures: Coated pipes – Pipe tensile strength	132	C371	ASTM
1196	Steel structures: Hollow part – mass per vertical unit area	72	4360	BS
1197	Steel structures: Hollow part – mass per vertical unit area	72	C370	ASTM
1198	Steel structures: Hollow part – total dimensions	111	10002 : Pt -1	BS
1199	Steel structures: Hollow part – total dimensions	111	C373	ASTM
1200	Steel structures: Solid/Hollow part – elongation percentage	85	10002 : Pt -1	BS
1201	Steel structures: Solid/Hollow part – elongation percentage	85	C372	ASTM
1202	Steel structures: Tensile strength including location of fracture	353	10002 : Pt -1	BS
1203	Steel structures: Solid/Hollow part -Tensile strength including location of fracture	353	C370/C615	ASTM
1204	Steel structures: Tensile strength of hollow part elongation	132	10002 : Pt -1	BS
1205	Steel structures: Tensile strength of hollow part elongation		C370/C615	ASTM
1206	Steel structures: Uncoated pipes – pipe mass per flow meter	39	10002 : Pt -1	BS
1207	Steel structures: Uncoated pipes – pipe mass per flow meter	39	C370/C615	ASTM
1208	Steel structures: Uncoated pipes – External dimeter	39	10002 : Pt -1	BS
1209	Steel structures: Uncoated pipes – External dimeter	39	C370/C615	ASTM
1210	Steel structures: Uncoated pipes – Percentage of pipe elongation (length measurement: 5.65xSo0.5)	85	10002 : Pt -1	BS
1211	Steel structures: Uncoated pipes – Percentage of pipe elongation (length measurement: 5.65xSo0.5)	85	C370/C615	ASTM
1212	Steel structures: Uncoated pipes / Tensile strength of the pipe including location of the fracture	353	10002 : Pt -1	BS
1213	Steel structures: Uncoated pipes / Tensile strength of the pipe including location of the fracture	353	C370/C615	ASTM
1214	Steel structures: Uncoated pipes / Pipe wall thickness	39	10002 : Pt -1	BS
1215	Steel structures: Uncoated pipes / Pipe wall thickness	39	C370/C615	ASTM
1216	Steel structures: Uncoated pipes / Elongation strength	132	10002 : Pt -1	BS
1217	Steel structures: Uncoated pipes / Elongation strength	132	C370/C615	ASTM
1218	Fastening ring: Direct tensile index – pressure loads – preparation fees	1313	F606/F606M	ASTM
1219	Fastening ring: Direct tensile index – pressure loads	247	-	ASTM

Ser. No.	Service	Price in AED	Method/ Number	Standard
Testing of Electric	al Transformer Oils			
1220	Dissolved gas analysis		D3612	ASTM
1221	Transformers oil humidity	26	D1533	ASTM
1222	Stress collapse	143	60156	IEC
1223	Color test	13	2049	ISO
1224	Neutralization value	26	62021	IEC
1225	Interconnect Stress Test	143	D971	ASTM
1226	Direct current dissipation factor	143	60247	IEC
1227	Direct current resistance	143	60247	IEC
1228	Formaldehyde 2 quantity	715	61198	IEC
1229	Quantity of disulfide and dibenzyline	1105	62697 -1	IEC
1230	Quantity of polychlorinated biphenyls in the transformers oil	1105	61619	IEC
1231	Transformers oil look	13	-	Visual
1232	Density in 150C		D 4052	ASTM
1233	Flash point	39	D 92	ASTM
1234	Pour point	39	D 97	ASTM
1235	Sludge sediments	91	5730	BS
1236	Kinematic viscosity	39	D 445	ASTM
1237	Sulfite content	260	D 4294	ASTM
1238	Corrosion Sulphite	325	D1275B/315	ASTM /IP
1239	Number pf particles	325	4406/1638	ISO -NAS
1240	Antioxidant additives	130	60666	IEC
1241	Collecting transformers oil on site	650	-	ASTM /IEC
1242	Training on collecting transformers oil on site	1950	D 4052	ASTM

Agricultural Soil Lab Test Rates

Ser. No.	Service	Rate in AED			
1	Soil test for agricultural purposes – Estimation of carbons and bicarbonates through calibration method				
2	Water test for agricultural purposes – Estimation of carbons and bicarbonates: Chlorides through calibration method				
3	Seeds test – Detection of bacteria	200			
4	Soil test for agricultural purposes – Estimation of electrical conductivity	100			
5	Soil test for agricultural purposes – Measurement of electrical conductivity	60			
6	Organic fertilizers test – Measurement of electrical conductivity	100			
7	Chemical fertilizers test – Estimation of metals/minerals through spectrometry for the metals/ minerals below:				
	Sodium, Calcium, Magnesium, Potassium oxide, Sulphur, Boron, Iron, Zinc, Manganese, Coper, Aluminum, Molybdenum and lead				
8	Organic fertilizers test – Estimation of metals/minerals through spectrometry for the metals/ minerals below:				
	Socium, Calcium, Magnesium, Potassium, Sulphur, Boron, Iron, Zinc, Manganese, Coper, Aluminum, Molybdenum, Phosphorus and lead				
0	Soil test for agricultural purposes – Estimation of metals/minerals through spectrometry for the metals/minerals below:				
9	8 Sodium, Calcium, Magnesium, Potassium, Sulphur, Boron, Iron, Zinc, Manganese, Coper, Aluminum, Molybdenum, Phosphorus and lead				
10	Water test for agricultural purposes – Estimation of metals/minerals through spectrometry for the metals/minerals below:				
	Molybdenum, Phosphorus and lead				
11	The fluoride content in water	65			
12	The iron content in water	100			
13	The lead content in water	100			
14	The Magnesium content in water	100			
15	The Manganese content in water	100			
16	Soil test for agricultural purposes – Humidity content	50			
17	Organic fertilizers test – Humidity content	50			
18	The Nitrate content in water	70			
19	The Nitrate content in water	70			
20	Soil test for agricultural purposes – Organic materials content	70			
21	Organic fertilizers – Organic materials content	100			
22	The Orthophosphate content in water	180			
23	Soluble oxygen content in water	180			
24	Soil test for agricultural purposes – Particles volume	100			
25	Soil test for agricultural purposes – Power of Hydrogen (pH)	30			
26	Soil test for agricultural purposes – Power of Hydrogen (pH)	30			
27	Organic fertilizers test - Power of Hydrogen (pH)	60			
28	The phenol content in water	800			
29	The Potassium content in water				
30	The Selenium content in water				
31	The Silicate content in water	100			
32	The Sodium content in water	100			
33	The Sulphate content in water	70			
34	The Sulphate content in water	70			
35	Estimation of turbidity in water	30			
36	The Zinc content in water	100			

Electrical Products Lab Test Rates

Ser. No.	Service	Standard	Method/ Number	Full Test in AED	Partial Test in AED	CTL /Full)
1	Electric fans	IEC	60335-2-80	6,420	4,173	6,420,6,932
2	Microwave oven	IEC	60335-2-25	6,932	4,506	7,965
3	Cooling devices (Refrigerator, ice-cream making devices and ice making devices)	IEC	60335-2-24	7,965	5,177	5,915
4	Hair cleaning devices (portable, hairstyling and mobile)	IEC	60335-2-23	5,915	3,845	6,035
5	Water heaters	IEC	60335-2-21	6,035	3,823	6,095
6	Coffee-making and espresso machines, electric cordless kettles for travel, cookers (pressure, rice, slow and steam), egg boiling devices, bottle-feeding heater, milk heaters and sterilization devices	IEC	60335-2-15	6,095	3,962	6,095
7	Electrical appliances	IEC	60335-2-14	6,095	3,962	6,095
8	Deep fact frying pans, frying pans and similar devices	IEC	60335-2-13	6,420	4,173	6,420
9	Toasters	IEC	60335-2-9	5,355	3,481	5,355
10	Hot plate (heating through Solenoid	IEC	60335-2-9	5,650	3,673	5,650
11	Other devices/machines	IEC	60335-2-9	5,490	3,569	5,490
12	Dry heaters	IEC	60335-2-3	5,435	3,533	5,435
13	Steam heaters	IEC	60335-2-3	5,480	3,562	5,480
14	Boilers	IEC	60335-2-3	5,720	3,718	5,720

Professional Hour Cost

Ser. No.	Job Description	Professional Hour Cost in AED
1	Technician	430
2	Senior engineer/Analyst	645
3	Manager/Senior engineer/Specialist	860